Plant growth analysis

Last updated

Plant growth analysis refers to a set of concepts and equations by which changes in size of plants over time can be summarised and dissected in component variables. It is often applied in the analysis of growth of individual plants, but can also be used in a situation where crop growth is followed over time.

Contents

Absolute size

In comparing different treatments, genotypes or species, the simplest type of growth analysis is to evaluate size of plants after a certain period of growth, typically from the time of germination. In plant biology, size is often measured as dry mass of whole plants (M), or the above-ground part of it. In high-throughput phenotyping platforms, the amount of green pixels as derived from photographs taken from plants from various directions is often the variable that is used to estimate plant size. [1]

Absolute growth rate (AGR)

In the case that plant size was determined at more than one occasion, the increase in size over a given time period can be determined. The Absolute Growth Rate (AGR) is temporal rate of change of size (mass).

where M is the change in mass of the plant during time t, respectively.
Absolute size at the end of an experiment then depends on seed mass, germination time, and the integration of AGR over all time steps measured.

Relative growth rate (RGR)

AGR is not constant, especially not in the first phases of plant growth. When there are enough resources available (light, nutrients, water), the increase of biomass after germination will be more or less proportional to the mass of the plant already present: small right after germination, larger when plants become bigger. Blackman (1919) was the first to recognize that this was similar to money accumulating in a bank account, with the increase determined by compounding interest. [2] He applied the same mathematical formula to describe plant size over time.

The equation for exponential mass growth rate in plant growth analysis is often expressed as:

Where:

RGR can then be written as:

In the case of two harvests, RGR can be simply calculated as [3] [4]

In the case of more harvests, a linear equation can be fitted through the ln-transformed size data. The slope of this line gives an estimate of the average RGR for the period under investigation, with units of g.g−1.day−1. A time-course of RGR can be estimated by fitting a non-linear equation through the ln-transformed size data, and calculating the derivative with respect to time. [5] For plants RGR values are typically (much) smaller than 1 g.g−1.day−1. Therefore, values are often reported in mg.g−1.day−1, with normal ranges for young, herbaceous species between 50–350 mg.g−1.day−1, and values for tree seedlings of 10–100 mg.g−1.day−1.

RGR components (LAR and ULR)

Soon after its inception, the RGR concept was expanded by a simple extension of the RGR equation: [6]

where A is the total leaf area of a plant. The first component is called the 'Leaf Area Ratio' (LAR) and indicates how much leaf area there is per unit total plant mass. For young plants, values are often in the range of 1–20 m2 kg−1, for tree seedlings they are generally less. The second component is the 'Unit Leaf Rate' (ULR), which is also termed 'Net Assimilation Rate' (NAR). This variable indicates the rate of biomass increase per unit leaf area, with typical values ranging from 5-15 g.m−2.day−1 for herbaceous species and 1-5 g.m−2.day−1 for woody seedlings. Although the ULR is not equal to the rate of photosynthesis per unit leaf area, both values are often well correlated. [7] [8]
The LAR can be further subdivided into two other variables that are relevant for plant biology: Specific leaf area (SLA) and Leaf Mass Fraction (LMF). SLA is the leaf area of a plant (or a given leaf) divided by leaf mass. LMF characterizes the fraction of total plant biomass that is allocated to leaves. In formula:

where ML is the mass of the leaves.
Thus, by sequentially harvesting leaf, stem, and root biomass as well as determining leaf area, deeper insight can be achieved in the various components of a plant and how they together determine whole plant growth.

Alternative ways to decompose RGR

As much as RGR can be seen from the perspective of C-economy, by calculating leaf area and photosynthesis, it could equally well be approached from the perspective of organic N concentration, and the rate of biomass increase per unit organic N:

where N is total plant organic Nitrogen, PNC is the plant organic nitrogen concentration, and NP, the nitrogen productivity, the increase in biomass per unit organic N present. [9]

Another way to break down RGR is to consider biomass increase from the perspective of a nutrient (element) and its uptake rate by the roots. RGR can then be rewritten as a function of the Root Mass Fraction (RMF), the concentration of that element in the plant and the specific uptake rate of roots for the element of interest. Under the condition that the concentration of the element of interest remains constant (i.e. dE/dM = E/M), RGR can be also written as:

,

which can be expanded to:

where MR is the mass of the roots, SAR the specific uptake rate of the roots (moles of E taken up per unit root mass and per time), and [E] the concentration of element E in the plant. [10]

Size-dependence of RGR

Although the increase in plant size is more or less proportional to plant mass already present, plants do not grow strictly exponentially. [11] In a period of several days, plant growth rate will vary because of diurnal changes in light intensity, and day-to-day differences in the daily light integral. At night, plants will respire and even lose biomass. Over a longer period (weeks to months), RGR will generally decrease because of several reasons. First, the newly formed leaves at the top of the plant will begin to shade lower leaves, and therefore, average photosynthesis per unit area will go down, and so will ULR. Second, non-photosynthetic biomass, especially stems, will increase with plant size. The RGR of trees in particular decreases with increasing size due in part to the large allocation to structural material in the trunk required to hold the leaves up in the canopy. Overall, respiration scales with total biomass, but photosynthesis only scales with photosynthetically active leaf area and as a result growth rate slows down as total biomass increases and LAR decreases. And thirdly, depending on the growth conditions applied, shoot and/or root space may become confined with plant age, or water and/or nutrient supply do not keep pace with plant size and become more and more limiting. One way to 'correct' for these differences is by plotting RGR and their growth components directly against plant size. [12] If RGR specifically is of interest, another approach is to separate size effects from intrinsic growth differences mathematically. [13]

Decomposing the RGR ignores the dependency of plant growth rate on plant size (or allometry) and assumes, incorrectly, that plant growth is directly proportional to total plant size (isometry). As a result RGR analyses assume that size effects are isometric (scaling exponents are 1.0) instead of allometric (exponents less than 1) or hypoallometric (exponents greater than 1). It has been demonstrated that traditional RGR lacks several of the critical traits influencing growth and the allometric dependency of leaf mass and also showed how to incorporate alloemtric dependencies into RGR growth equations. This has been used to derive a generalized trait-based model of plant growth (see also Metabolic Scaling Theory and Metabolic Theory of Ecology) to show how plant size and the allometric scaling of key functional traits interact to regulate variation in whole-plant relative growth rate. [14]

Growth analysis in agronomy

Plant growth analysis is often applied at the individual level to young well-spaced plants grown individually in pots. However, plant growth is also highly relevant in agronomy, where plants are generally grown at high density and to seed maturity. After canopy closure, plant growth is not proportional to size anymore, but changes to linear, with in the end saturation to a maximum value when crops mature. Equations used to describe plant size over time are then often expolinear [15] or sigmoidal. [16] [17]

Agronomic studies often focus on the above-ground part of plant biomass, and consider crop growth rates rather than individual plant growth rates. Nonetheless there is a strong corollary between the two approaches. More specifically, the ULR as discussed above shows up in crop growth analysis as well, as:

where CGR is the Crop Growth Rate, the increase in (shoot) biomass per unit ground area, Ag the ground area occupied by a crop, A the total amount of leaf area on that ground area, and LAI the Leaf Area Index, the amount of leaf area per unit ground area. [4]

Further reading

See also

Related Research Articles

<span class="mw-page-title-main">Exponential function</span> Mathematical function, denoted exp(x) or e^x

The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the operation of taking powers of a number, but various modern definitions allow it to be rigorously extended to all real arguments , including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to consider the exponential function to be "the most important function in mathematics".

<span class="mw-page-title-main">Evergreen</span> Plant that has leaves in all seasons

In botany, an evergreen is a plant which has foliage that remains green and functional through more than one growing season. This contrasts with deciduous plants, which lose their foliage completely during the winter or dry season.

<span class="mw-page-title-main">Logistic function</span> S-shaped curve

A logistic function or logistic curve is a common S-shaped curve with the equation

<span class="mw-page-title-main">Exponential growth</span> Growth of quantities at rate proportional to the current amount

Exponential growth is a process that increases quantity over time at an ever-increasing rate. It occurs when the instantaneous rate of change of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent. Exponential growth is the inverse of logarithmic growth.

<span class="mw-page-title-main">Terminal velocity</span> Highest velocity attainable by a falling object

Terminal velocity is the maximum velocity (speed) attainable by an object as it falls through a fluid. It occurs when the sum of the drag force (Fd) and the buoyancy is equal to the downward force of gravity (FG) acting on the object. Since the net force on the object is zero, the object has zero acceleration. For objects falling through regular air, the buoyant force is usually dismissed and not taken into account as its effects are negligible.

The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. The populations change through time according to the pair of equations:

Population dynamics is the type of mathematics used to model and study the size and age composition of populations as dynamical systems.

<span class="mw-page-title-main">Tsiolkovsky rocket equation</span> Mathematical equation describing the motion of a rocket

The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity can thereby move due to the conservation of momentum. It is credited to Konstantin Tsiolkovsky who independently derived it and published it in 1903, although it had been independently derived and published by William Moore in 1810, and later published in a separate book in 1813. Robert Goddard also developed it independently in 1912, and Hermann Oberth derived it independently about 1920.

<span class="mw-page-title-main">Basic reproduction number</span> Metric in epidemiology

In epidemiology, the basic reproduction number, or basic reproductive number, denoted , of an infection is the expected number of cases directly generated by one case in a population where all individuals are susceptible to infection. The definition assumes that no other individuals are infected or immunized. Some definitions, such as that of the Australian Department of Health, add the absence of "any deliberate intervention in disease transmission". The basic reproduction number is not necessarily the same as the effective reproduction number , which is the number of cases generated in the current state of a population, which does not have to be the uninfected state. is a dimensionless number and not a time rate, which would have units of time−1, or units of time like doubling time.

<span class="mw-page-title-main">Allometry</span> Study of the relationship of body size to shape, anatomy, physiology, and behavior

Allometry is the study of the relationship of body size to shape, anatomy, physiology and behaviour, first outlined by Otto Snell in 1892, by D'Arcy Thompson in 1917 in On Growth and Form and by Julian Huxley in 1932.

<span class="mw-page-title-main">Satellite galaxy</span> Galaxy that orbits a larger galaxy due to gravitational attraction

A satellite galaxy is a smaller companion galaxy that travels on bound orbits within the gravitational potential of a more massive and luminous host galaxy. Satellite galaxies and their constituents are bound to their host galaxy, in the same way that planets within our own solar system are gravitationally bound to the Sun. While most satellite galaxies are dwarf galaxies, satellite galaxies of large galaxy clusters can be much more massive. The Milky Way is orbited by about fifty satellite galaxies, the largest of which is the Large Magellanic Cloud.

The Gompertz curve or Gompertz function is a type of mathematical model for a time series, named after Benjamin Gompertz (1779–1865). This function derives the formula for yx+b^x with logarithm. Dr. Allen is a key import in this equation. It is a sigmoid function which describes growth as being slowest at the start and end of a given time period. The right-side or future value asymptote of the function is approached much more gradually by the curve than the left-side or lower valued asymptote. This is in contrast to the simple logistic function in which both asymptotes are approached by the curve symmetrically. It is a special case of the generalised logistic function. The function was originally designed to describe human mortality, but since has been modified to be applied in biology, with regard to detailing populations.

<span class="mw-page-title-main">Range (aeronautics)</span> Distance an aircraft can fly between takeoff and landing

The maximal total range is the maximum distance an aircraft can fly between takeoff and landing. Powered aircraft range is limited by the aviation fuel energy storage capacity considering both weight and volume limits. Unpowered aircraft range depends on factors such as cross-country speed and environmental conditions. The range can be seen as the cross-country ground speed multiplied by the maximum time in the air. The fuel time limit for powered aircraft is fixed by the available fuel and rate of consumption.

Specific leaf area (SLA) is the ratio of leaf area to leaf dry mass. The inverse of SLA is Leaf Mass per Area (LMA).

Relative growth rate (RGR) is growth rate relative to size - that is, a rate of growth per unit time, as a proportion of its size at that moment in time. It is also called the exponential growth rate, or the continuous growth rate.

<span class="mw-page-title-main">Entropy production</span> Development of entropy in a thermodynamic system

Entropy production is the amount of entropy which is produced during heat process to evaluate the efficiency of the process.

Biomass partitioning is the process by which plants divide their energy among their leaves, stems, roots, and reproductive parts. These four main components of the plant have important morphological roles: leaves take in CO2 and energy from the sun to create carbon compounds, stems grow above competitors to reach sunlight, roots absorb water and mineral nutrients from the soil while anchoring the plant, and reproductive parts facilitate the continuation of species. Plants partition biomass in response to limits or excesses in resources like sunlight, carbon dioxide, mineral nutrients, and water and growth is regulated by a constant balance between the partitioning of biomass between plant parts. An equilibrium between root and shoot growth occurs because roots need carbon compounds from photosynthesis in the shoot and shoots need nitrogen absorbed from the soil by roots. Allocation of biomass is put towards the limit to growth; a limit below ground will focus biomass to the roots and a limit above ground will favor more growth in the shoot.

Daily light integral (DLI) describes the number of photosynthetically active photons that are delivered to a specific area over a 24-hour period. This variable is particularly useful to describe the light environment of plants.

Construction costs is a concept in biology that conveys how much glucose is required to construct a unit of plant biomass, given the biosynthetic pathways and starting from glucose and mineral constituents. It includes the sugars required to provide the carbon skeletons for the formation of e.g. lipids, lignin and proteins, but also the glucose required to produce energy (ATP) and reducing power to drive the metabolic pathways.

Biomass allocation is a concept in plant biology which indicates the relative proportion of plant biomass present in the different organs of a plant. It can also be used for whole plant communities.

References

  1. Fiorani, F.; Schurr, U. (2013). "Future scenarios for plant phenotyping". Annual Review of Plant Biology. 64: 267–291. doi:10.1146/annurev-arplant-050312-120137. PMID   23451789.
  2. Blackman, V.H. (1919). "The compound interest law and plant growth". Annals of Botany. 33 (3): 353–360. doi:10.1093/oxfordjournals.aob.a089727.
  3. 1 2 Evans, G.C. (1972). The Quantitative Analysis of Plant Growth. London: Edward Arnold.
  4. 1 2 Hunt, R (1982). Plant Growth Curves. London: Edward Arnold.
  5. Hunt, R.; Shipley, B. (1996). "Regression Smoothers for Estimating Parameters of Growth Analyses". Annals of Botany. 78 (5): 569–576. doi: 10.1006/anbo.1996.0162 . ISSN   0305-7364.
  6. Briggs, G.E.; Kidd, F.; West, C. (1920). "A quantitative analysis of plant growth. Part II". Annals of Applied Biology. 7 (2–3): 202–223. doi:10.1111/j.1744-7348.1920.tb05308.x.
  7. 1 2 Poorter, H; Van der Werf, A (1998). "Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species". In Lambers, H; Poorter, H.; Van Vuuren, MMI (eds.). Inherent Variation in Plant Growth: Physiological Mechanisms and Ecological Consequences. Leiden: Backhuys Publishers. pp. 309–336.
  8. Pons, T.L.; Poorter, H. (2014). "The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance". Frontiers in Plant Science. 5: 12. doi: 10.3389/fpls.2014.00012 . ISSN   1664-462X. PMC   3912841 . PMID   24550922.
  9. Ingestad, T. (1979). "Nitrogen stress in birch seedlings". Physiologia Plantarum. 45 (1): 149–157. doi:10.1111/j.1399-3054.1979.tb01679.x. ISSN   1399-3054.
  10. Garnier, E (1991). "Resource capture, biomass allocation and growth in herbaceous plants". Trends in Ecology & Evolution. 6 (4): 126–131. doi:10.1016/0169-5347(91)90091-B. ISSN   0169-5347. PMID   21232441.
  11. Hunt, R.; Lloyd, P.S. (1987). "Growth and partitioning". New Phytologist. 106: 235–249. doi:10.1111/j.1469-8137.1987.tb04692.x.
  12. Poorter, H.; Pothmann, P. (1992). "Growth and carbon economy of a fast-growing and a slow-growing grass species as dependent on ontogeny". New Phytologist. 120 (1): 159–166. doi: 10.1111/j.1469-8137.1992.tb01069.x . ISSN   1469-8137.
  13. Philipson, C.D.; Saner, P.; Marthews, T.R.; Nilus, R.; Reynolds, G.; Turnbull, L.A.; Hector, A. (2012). "Light-based Regeneration Niches: Evidence from 21 Dipterocarp Species using Size-specific RGRs". Biotropica. 44 (5): 627–636. doi:10.1111/j.1744-7429.2011.00833.x. ISSN   1744-7429. S2CID   86837456.
  14. Enquist, B.; et al. (2007). "A general integrative model for scaling plant growth, carbon flux, and functional trait spectra". Nature. 449 (7159): 218–222. Bibcode:2007Natur.449..218E. doi:10.1038/nature06061. PMID   17851525. S2CID   4411354.
  15. Goudriaan, J.; Monteith, J.L. (1990). "A Mathematical Function for Crop Growth Based on Light Interception and Leaf Area Expansion". Annals of Botany. 66 (6): 695–701. doi:10.1093/oxfordjournals.aob.a088084. ISSN   0305-7364.
  16. Causton, David R. (1981). The biometry of plant growth. Venus, Jill C. London: Edward Arnold. ISBN   0713128127. OCLC   8154990.
  17. Yin, X.; Goudriaan, J.; Lantinga, E.A.; Vos, J; Spiertz, H.J. (2003-02-01). "A Flexible Sigmoid Function of Determinate Growth". Annals of Botany. 91 (3): 361–371. doi:10.1093/aob/mcg029. ISSN   0305-7364. PMC   4244967 . PMID   12547689.
  18. Hunt, R (1978). Plant Growth Analysis . London: E. Arnold. ISBN   0713126957. OCLC   4408604.
  19. Rees, M.; Osborne, C.P.; Woodward, F.I.; Hulme, S.P.; Turnbull, L.A.; Taylor, S.H. (2010). "Partitioning the components of Relative Growth Rate: How important is plant size variation?" (PDF). The American Naturalist. 176 (6): E152–E161. doi:10.1086/657037. ISSN   0003-0147. PMID   20950150. S2CID   36532822.
  20. Poorter, H.; Lewis, C. (1986). "Testing differences in relative growth rate: A method avoiding curve fitting and pairing". Physiologia Plantarum. 67 (2): 223–226. doi:10.1111/j.1399-3054.1986.tb02447.x. ISSN   1399-3054.
  21. Hunt, R.; Causton, D.R.; Shipley, B.; Askew, A.P. (2002). "A modern tool for classical plant growth analysis". Annals of Botany. 90 (4): 485–488. doi: 10.1093/aob/mcf214 . ISSN   0305-7364. PMC   4240380 . PMID   12324272.
  22. Hoffmann, W.A.; Poorter, H. (2002). "Avoiding bias in calculations of relative growth rate". Annals of Botany. 90 (1): 37–42. doi: 10.1093/aob/mcf140 . PMC   4233846 . PMID   12125771.