Theoretical production ecology

Last updated

Theoretical production ecology tries to quantitatively study the growth of crops. The plant is treated as a kind of biological factory, which processes light, carbon dioxide, water, and nutrients into harvestable parts. Main parameters kept into consideration are temperature, sunlight, standing crop biomass, plant production distribution, nutrient and water supply.

Contents

Modelling

Modelling is essential in theoretical production ecology. Unit of modelling usually is the crop, the assembly of plants per standard surface unit. Analysis results for an individual plant are generalised to the standard surface, e.g. the leaf area index is the projected surface area of all crop leaves above a unit area of ground.

Processes

The usual system of describing plant production divides the plant production process into at least five separate processes, which are influenced by several external parameters.

Two cycles of biochemical reactions constitute the basis of plant production, the light reaction and the dark reaction. [1]

Parameters

Important parameters in theoretical production models thus are:

Climate
Although CO2 levels are constant under natural circumstances [on the contrary, CO2 concentration in the atmosphere has been increasing steadily for 200 years], CO2 fertilization is common in greenhouses and is known to increase yields by on average 24% [a specific value, e.g., 24%, is meaningless without specification of the "low" and "high" CO2 levels being compared]. [2]
C4 plants like maize and sorghum can achieve a higher yield at high solar radiation intensities, because they prevent the leaking of captured carbon dioxide due to the spatial separation of carbon dioxide capture and carbon dioxide use in the dark reaction. This means that their photorespiration is almost zero. This advantage is sometimes offset by a higher rate of maintenance respiration. In most models for natural crops, carbon dioxide levels are assumed to be constant.
Crop
Different plant organs have a different respiration rate, e.g. a young leaf has a much higher respiration rate than roots, storage tissues or stems do. There is a distinction between "growth respiration" and "maintenance respiration".
Sinks, such as developing fruits, need to be present. They are usually represented by a discrete switch, which is turned on after a certain condition, e.g. critical daylength has been met.
Care

Phases in crop growth

Theoretical production ecology assumes that the growth of common agricultural crops, such as cereals and tubers, usually consists of four (or five) phases:

When a crop has a temperature sum of e.g. 150 °C·d and a critical temperature of 10 °C, it will germinate in 15 days when temperature is 20 °C, but in 10 days when temperature is 25 °C. When the temperature sum exceeds the threshold value, the germination process is complete.

Existing plant production models

Plant production models exist in varying levels of scope (cell, physiological, individual plant, crop, geographical region, global) and of generality: the model can be crop-specific or be more generally applicable. In this section the emphasis will be on crop-level based models as the crop is the main area of interest from an agronomical point of view.

As of 2005, several crop production models are in use. The crop growth model SUCROS has been developed during more than 20 years and is based on earlier models. Its latest revision known dates from 1997. The IRRI and Wageningen University more recently developed the rice growth model ORYZA2000. This model is used for modeling rice growth. Both crop growth models are open source. Other more crop-specific plant growth models exist as well.

SUCROS

SUCROS is programmed in the Fortran computer programming language. The model can and has been applied to a variety of weather regimes and crops. Because the source code of Sucros is open source, the model is open to modifications of users with FORTRAN programming experience. The official maintained version of SUCROS comes into two flavours: SUCROS I, which has non-inhibited unlimited crop growth (which means that only solar radiation and temperature determine growth) and SUCROS II, in which crop growth is limited only by water shortage.

ORYZA2000

The ORYZA2000 rice growth model has been developed at the IRRI in cooperation with Wageningen University. This model, too, is programmed in FORTRAN. The scope of this model is limited to rice, which is the main food crop for Asia.

Other models

The United States Department of Agriculture has sponsored a number of applicable crop growth models for various major US crops, such as cotton, soy bean, wheat and rice. [3] Other widely used models are the precursor of SUCROS (SWATR), CERES, several incarnations of PLANTGRO, SUBSTOR, the FAO-sponsored CROPWAT, AGWATER, the erosion-specific model EPIC, [4] and the cropping system CropSyst. [5]

A less mechanistic growth and competition model, called the conductance model, has been developed, mainly at Warwick-HRI, Wellesbourne, UK. This model simulates light interception and growth of individual plants based on the lateral expansion of their crown zone areas. Competition between plants is simulated by a set algorithms related to competition for space and resultant light intercept as the canopy closes. Some versions of the model assume overtopping of some species by others. Although the model cannot take account of water or mineral nutrients, it can simulate individual plant growth, variability in growth within plant communities and inter-species competition. This model was written in Matlab. See Benjamin and Park (2007) Weed Research 47, 284–298 for a recent review.

Related Research Articles

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their activities. Photosynthetic organisms use intracellular organic compounds to store the chemical energy they produce in photosynthesis within organic compounds like sugars, glycogen, cellulose and starches. Photosynthesis is usually used to refer to oxygenic photosynthesis, a process that produces oxygen. To use this stored chemical energy, the organisms' cells metabolize the organic compounds through another process called cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.

<span class="mw-page-title-main">Primary production</span> Synthesis of organic compounds from carbon dioxide by biological organisms

In ecology, primary production is the synthesis of organic compounds from atmospheric or aqueous carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through chemosynthesis, which uses the oxidation or reduction of inorganic chemical compounds as its source of energy. Almost all life on Earth relies directly or indirectly on primary production. The organisms responsible for primary production are known as primary producers or autotrophs, and form the base of the food chain. In terrestrial ecoregions, these are mainly plants, while in aquatic ecoregions algae predominate in this role. Ecologists distinguish primary production as either net or gross, the former accounting for losses to processes such as cellular respiration, the latter not.

<span class="mw-page-title-main">Energy flow (ecology)</span> Flow of energy through food chains in ecological energetics

Energy flow is the flow of energy through living things within an ecosystem. All living organisms can be organized into producers and consumers, and those producers and consumers can further be organized into a food chain. Each of the levels within the food chain is a trophic level. In order to more efficiently show the quantity of organisms at each trophic level, these food chains are then organized into trophic pyramids. The arrows in the food chain show that the energy flow is unidirectional, with the head of an arrow indicating the direction of energy flow; energy is lost as heat at each step along the way.

<span class="mw-page-title-main">Plant nutrition</span> Study of the chemical elements and compounds necessary for normal plant life

Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite. This is in accordance with Justus von Liebig's law of the minimum. The total essential plant nutrients include seventeen different elements: carbon, oxygen and hydrogen which are absorbed from the air, whereas other nutrients including nitrogen are typically obtained from the soil.

C<sub>3</sub> carbon fixation Series of interconnected biochemical reactions

C3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C4 and CAM. This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction:

<span class="mw-page-title-main">Plant physiology</span> Subdiscipline of botany

Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants.

<span class="mw-page-title-main">Seedling</span> Young plant developing out from a seed

A seedling is a young sporophyte developing out of a plant embryo from a seed. Seedling development starts with germination of the seed. A typical young seedling consists of three main parts: the radicle, the hypocotyl, and the cotyledons. The two classes of flowering plants (angiosperms) are distinguished by their numbers of seed leaves: monocotyledons (monocots) have one blade-shaped cotyledon, whereas dicotyledons (dicots) possess two round cotyledons. Gymnosperms are more varied. For example, pine seedlings have up to eight cotyledons. The seedlings of some flowering plants have no cotyledons at all. These are said to be acotyledons.

The light compensation point (Ic) is the light intensity on the light curve where the rate of photosynthesis exactly matches the rate of cellular respiration. At this point, the uptake of CO2 through photosynthetic pathways is equal to the respiratory release of carbon dioxide, and the uptake of O2 by respiration is equal to the photosynthetic release of oxygen. The concept of compensation points in general may be applied to other photosynthetic variables, the most important being that of CO2 concentration – CO2 compensation point (Γ).Interval of time in day time when light intensity is low due to which net gaseous exchange is zero is called as compensation point.

The photosynthetic efficiency is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

<span class="mw-page-title-main">Algal nutrient solution</span>

Algal nutrient solutions are made up of a mixture of chemical salts and seawater. Sometimes referred to as "Growth Media", nutrient solutions, provide the materials needed for algae to grow. Nutrient solutions, as opposed to fertilizers, are designed specifically for use in aquatic environments and their composition is much more precise. In a unified system, algal biomass can be collected by utilizing carbon dioxide emanating from power plants and wastewater discharged by both industrial and domestic sources. This approach allows for the concurrent exploitation of the microalgae's capabilities in both carbon dioxide fixation and wastewater treatment. Algae, macroalgae, and microalgae hold promise in addressing critical global challenges. Sustainable development goals can be advanced through algae-based solutions, to promote a healthy global ecosystem.

Ecophysiology, environmental physiology or physiological ecology is a biological discipline that studies the response of an organism's physiology to environmental conditions. It is closely related to comparative physiology and evolutionary physiology. Ernst Haeckel's coinage bionomy is sometimes employed as a synonym.

<span class="mw-page-title-main">Soil respiration</span> Chemical process produced by soil and the organisms within it

Soil respiration refers to the production of carbon dioxide when soil organisms respire. This includes respiration of plant roots, the rhizosphere, microbes and fauna.

<span class="mw-page-title-main">Nutrient film technique</span>

Nutrient film technique (NFT) is a hydroponic technique where in a very shallow stream of water containing all the dissolved nutrients required for plant growth is re-circulated past the bare roots of plants in a watertight gully, also known as channels.

<span class="mw-page-title-main">Plant stress measurement</span> CO2-1PPM

Plant stress measurement is the quantification of environmental effects on plant health. When plants are subjected to less than ideal growing conditions, they are considered to be under stress. Stress factors can affect growth, survival and crop yields. Plant stress research looks at the response of plants to limitations and excesses of the main abiotic factors, and of other stress factors that are important in particular situations. Plant stress measurement usually focuses on taking measurements from living plants. It can involve visual assessments of plant vitality, however, more recently the focus has moved to the use of instruments and protocols that reveal the response of particular processes within the plant

Biomass partitioning is the process by which plants divide their energy among their leaves, stems, roots, and reproductive parts. These four main components of the plant have important morphological roles: leaves take in CO2 and energy from the sun to create carbon compounds, stems grow above competitors to reach sunlight, roots absorb water and mineral nutrients from the soil while anchoring the plant, and reproductive parts facilitate the continuation of species. Plants partition biomass in response to limits or excesses in resources like sunlight, carbon dioxide, mineral nutrients, and water and growth is regulated by a constant balance between the partitioning of biomass between plant parts. An equilibrium between root and shoot growth occurs because roots need carbon compounds from photosynthesis in the shoot and shoots need nitrogen absorbed from the soil by roots. Allocation of biomass is put towards the limit to growth; a limit below ground will focus biomass to the roots and a limit above ground will favor more growth in the shoot.

CO<sub>2</sub> fertilization effect Fertilization from increased levels of atmospheric carbon dioxide

The CO2 fertilization effect or carbon fertilization effect causes an increased rate of photosynthesis while limiting leaf transpiration in plants. Both processes result from increased levels of atmospheric carbon dioxide (CO2). The carbon fertilization effect varies depending on plant species, air and soil temperature, and availability of water and nutrients. Net primary productivity (NPP) might positively respond to the carbon fertilization effect. Although, evidence shows that enhanced rates of photosynthesis in plants due to CO2 fertilization do not directly enhance all plant growth, and thus carbon storage. The carbon fertilization effect has been reported to be the cause of 44% of gross primary productivity (GPP) increase since the 2000s. Earth System Models, Land System Models and Dynamic Global Vegetation Models are used to investigate and interpret vegetation trends related to increasing levels of atmospheric CO2. However, the ecosystem processes associated with the CO2 fertilization effect remain uncertain and therefore are challenging to model.

<span class="mw-page-title-main">Lake metabolism</span> The balance between production and consumption of organic matter in lakes

Lake metabolism represents a lake's balance between carbon fixation and biological carbon oxidation. Whole-lake metabolism includes the carbon fixation and oxidation from all organism within the lake, from bacteria to fishes, and is typically estimated by measuring changes in dissolved oxygen or carbon dioxide throughout the day.

Construction costs is a concept in biology that conveys how much glucose is required to construct a unit of plant biomass, given the biosynthetic pathways and starting from glucose and mineral constituents. It includes the sugars required to provide the carbon skeletons for the formation of e.g. lipids, lignin and proteins, but also the glucose required to produce energy (ATP) and reducing power to drive the metabolic pathways.

Biomass allocation is a concept in plant biology which indicates the relative proportion of plant biomass present in the different organs of a plant. It can also be used for whole plant communities.

References

  1. Amthor JS (2010) From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytologist 188:939-959
  2. "Carbon dioxide fertilization is neither boon nor bust". EurekAlert!.
  3. "Available Crop Models : USDA ARS". www.ars.usda.gov.
  4. "Crop growth models". Archived from the original on 2005-12-20. Retrieved 2005-07-30.
  5. "CS_Suite - Dr. Claudio Stöckle WSU". Archived from the original on 2010-05-31. Retrieved 2014-01-05.

Further reading