Plant virus xrRNAs

Last updated

xrRNAs in Plant Viruses (Tombusviridae and Solemoviridae)

Plant-infecting positive-strand RNA viruses from the Tombusviridae and Solemoviridae families contain Exoribonuclease-Resistant RNAs ( xrRNAs), typically located at the beginning of the 3′ UTR or within the intergenic region (IGR) between open reading frames (ORF1 and ORF2). [1] [2] These plant-virus xrRNAs are distinct in sequence and secondary structure from flavivirus xrRNAs, representing a clear example of convergent evolution toward the same functional outcome of exoribonuclease resistance. They are classified as class 3 xrRNAs.

Plant-virus class 3 xrRNAs consist of a single stem-loop containing a pseudoknot between the apical stem and the 3′ end, reinforced by a conserved T-loop/D-loop interaction. [3] [4] [5] Some variants additionally include a short downstream SL that is dispensable for nuclease-resistance. Despite the differences in sequence and secondary structure, the resulting three-dimensional fold forms a similar protective ring around the 5′ end that blocks degradation. [5]

xrRNAs have been identified in Red clover necrotic mosaic virus (RCNMV), as well as in major agricultural pathogens including Potato leafroll virus (PLRV), Maize chlorotic mottle virus (MCMV), and Maize yellow dwarf virus-RMV (MYDV-RMV, formerly BYDV-RMV). [1] [5] Loss of xrRNA function leads to severely impaired viral replication, emphasizing their essential role in viral fitness and translational regulation. [5]

References

  1. 1 2 Steckelberg, Anna-Lena; Vicens, Quentin; Kieft, Jeffrey S. (18 December 2018). "Exoribonuclease-Resistant RNAs Exist within both Coding and Noncoding Subgenomic RNAs". mBio. 9 (6): e02461–18. doi:10.1128/mBio.02461-18. ISSN   2150-7511. PMC   6299227 . PMID   30563900.
  2. Iwakawa, Hiro-Oki; Mizumoto, Hiroyuki; Nagano, Hideaki; Imoto, Yuka; Takigawa, Kazuma; Sarawaneeyaruk, Siriruk; Kaido, Masanori; Mise, Kazuyuki; Okuno, Tetsuro (2008). "A viral noncoding RNA generated by cis-element-mediated protection against 5'->3' RNA decay represses both cap-independent and cap-dependent translation". Journal of Virology. 82 (20): 10162–10174. doi:10.1128/JVI.01027-08. ISSN   1098-5514. PMC   2566255 . PMID   18701589.
  3. Steckelberg, Anna-Lena; Akiyama, Benjamin M.; Costantino, David A.; Sit, Tim L.; Nix, Jay C.; Kieft, Jeffrey S. (19 June 2018). "A folded viral noncoding RNA blocks host cell exoribonucleases through a conformationally dynamic RNA structure". Proceedings of the National Academy of Sciences of the United States of America. 115 (25): 6404–6409. Bibcode:2018PNAS..115.6404S. doi: 10.1073/pnas.1802429115 . ISSN   1091-6490. PMC   6016793 . PMID   29866852.
  4. Steckelberg, Anna-Lena; Vicens, Quentin; Costantino, David A.; Nix, Jay C.; Kieft, Jeffrey S. (2020). "The crystal structure of a Polerovirus exoribonuclease-resistant RNA shows how diverse sequences are integrated into a conserved fold". RNA. 26 (12): 1767–1776. doi:10.1261/rna.076224.120. ISSN   1469-9001. PMC   7668246 . PMID   32848042.
  5. 1 2 3 4 Gezelle, Jeanine G.; Korn, Sophie M.; McDonald, Jayden T.; Gong, Zhen; Erickson, Anna; Huang, Chih-Hung; Yang, Feiyue; Cronin, Matt; Kuo, Yen-Wen; Wimberly, Brian T.; Steckelberg, Anna-Lena (27 August 2025). "A conserved viral RNA fold enables nuclease resistance across kingdoms of life". Nucleic Acids Research. 53 (16) gkaf840. doi:10.1093/nar/gkaf840. ISSN   1362-4962. PMC   12397905 . PMID   40884403.