Plastic sequestration is a means of plastic waste management that secures used plastic out of industry and out of the environment into reusable building blocks made by manual compaction. Plastic sequestration is motivated by environmental protection and modeled on the Earth's process of carbon sequestration. [1] Emerging out of the struggle of towns and communities in the Global South [2] to deal with plastic pollution, plastic sequestration compaction methods are characterized by being locally based, non-capital, non-industrial and low-tech. [3] Plastic sequestration is defined by the goals of securing plastic out of the environment and out of high energy/carbon industrial systems. [4] Based on eliminating the chemical and physical and abiotic and biotic degradation pathways, [5] plastic sequestration aims to achieve these goals, by terminally reducing the net surface area of thin film plastics. The building blocks that emerge from plastic sequestration are used in applications that further protect from degradation and permanently keep plastic out of industrial processes, thereby preventing their carbon emissions. [6]
In general, plastic sequestration begins by segregating plastic from organics and other materials. [7] The plastic is then cleaned and dried before it is manually compacted into dense blocks—typically using a stick or a press. [8]
Examples of plastic sequestration include ecobricks, cigbricks, ocean ecobricks,ubuntu blox, specifically made dense plastic boards and blocks, and some products of the precious plastic movement. The methods of plastic sequestration is fundamentally distinct from landfilling and plastic burial. The Global Ecobrick Alliance, defines plastic sequestration as a non-industrial, manual, carbon-neutral compaction of used, clean and dry plastic that achieves a density over 0.33g/ml and a specific surface degradation rate (SSDR [5] ) below 0.1 μm year−1. [3]
Building with the blocks that result from compaction is a part of the process of plastic sequestration. Typically, Cob_(material) / adobe / earth building are used to completely encase the blocks. Earth building applications must protect from all forms of plastic degradation (i.e. heat, light, friction, fire, etc.). [9] Earth building methods ensure that the blocks can be extricated undamaged from the construction when it comes to its end. Earth building methods also ensure that the construction process remains carbon-neutral. [10] [11]
The concept of plastic sequestration as an ecological service that follows Earth's example of carbon sequestration was laid out at the Le Havre University, 50th Annual Bandung Spirit Conference, in a paper presented by Ani Himawati and Russell Maier. [12] [13] Building on this concept, the Global Ecobrick Alliance [14] developed a theoretical framework and criteria for plastic sequestration in order to exclude applications that are not ecological services, and to encourage sequestration methodologies and applications that are. The criteria of plastic sequestration are based on the principles of Earthen Ethics, [15] that delineate the parameters of ecological contribution, research by Center for International Environmental Law on the carbon impact of the plastic industry, and the science of preventing polymer degradation.
The goal of plastic sequestration is to create the conditions to prevent the physical and chemical degradation of plastic (i.e. depolymerization, chemical modification, mass loss or mineralization to CO2 and H2O) and the emissions of industrial processing. Plastic polymer degradation occurs in two ways: (i) physical, such as cracking, embrittlement, and flaking, or (ii) chemical, referring to changes at the molecular level. [5] Chemical and physical degradation happens through biotic and abiotic pathways. Plastic sequestration methods must prevent chemical and physical degradation, by blocking biotic (microbial action) and abiotic (light, heat, acids, etc.) degradation pathways and by preventing industrial reprocessing. [3] Emissions occur when plastic is processed industrially (i.e. recycling, landfilling, incineration) [22]
Research into the polymer degradation shows that in the environment, degradation occurs on the exposed surface of plastic and that net degradation is directly proportional to the amount of surface area exposed. [5] Mathematical extrapolation indicates that a thin film of HDPE plastic (high surface area) can degrade 1100 times faster than a bead of plastic of the same weight (low surface area). Whereas a thin film of plastic will degrade in 1.8 ± 0.4 years a bead of plastic will endure for 2000 ± 400 years. [5] Furthermore, by reducing the specific surface degradation rate (SSDR) of the low-surface-area plastic, it can endure indefinitely. [5] Thus, plastic sequestration methodologies prioritize the terminal reduction of net surface area of the thin film plastics through compaction [23] and building methods that prevent abiotic and biotic degradation, reducing the SSDR of the plastic to below 0.1 μm year–1. [3]
On average globally, each metric ton of plastic processed by recycling, land-filing and incineration generates 689kg, 65Kg and 2967kg of CO2e respectively. [24] Research also shows that of all the plastic generated over all-time, the industrial processing of plastic has dispersed 91% of into the biosphere. [25] There it is subject to the chemical and physical degradation pathways mentioned above. Plastic sequestration aims to avoid these emissions and this dispersal by preventing plastic's industrial processing.
Research has shown that covering plastic in earth is an effective method of preventing abiotic plastic degradation (i.e. preventing exposure to sunlight, friction, heat, etc.). [26] Even plastic that is designed to degrade, when it is buried in low-oxygen soil, abiotic and biotic are prevented. [27] Research also shows that submerging plastic in inert soil (minimal bacteria, micro-organisms) can further slow plastic degradation. [28]
Plastic sequestration is modeled on Earth's planetary process of carbon sequestration. Earthen carbon sequestration occurs through the carbon cycle's short and long-term processes: (i) the Earth's process of cycling carbon as life's building blocks (ii) the long-term process of removing carbon out of the atmosphere and sequestering it into geological storage. In the same way, plastic sequestrated blocks have a short and long-term plan: (i) blocks are made to be indefinitely reusable. [29] (ii) blocks are put to use into longer and longer term buildings. [30] Just as the Earth sequestered carbon under ground indefinitely, long-term plastic sequestration applications immerse its blocks in earthen constructions, blocking biotic and abiotic forms of plastic degradation (i.e. photo-degradation, heat, fire and friction).
Since 1950 an estimated 8,300 million metric tons (Mt) of virgin plastics have been produced worldwide; 9% of which has been recycled, 12% were incinerated and 79% have accumulated in landfills or the natural environment. [31] In the early 2000s, the increase in plastic products and packaging became an overwhelming problem for rural towns and communities. [32] Without recourse to industrial [plastic recycling], incineration or waste exportation, plastic waste began to become a serious aesthetic and environmental issue for towns and villages in the global south. [33]
Driven by local aesthetic and environmental concerns, plastic solution innovation has been led by communities in the global south. [34] In particular, grass roots methods practically and physically dealing with plastic pollution first emerged in the global south. [35] Examples include Ecobrick movement, Ubuntu Blox, [36] and the Precious Plastic brick creation.
These methods of plastic compaction were characterized by being locally based, non-capital, and non-industrial. The original focus of these methods was to turn large amounts of waste plastic into valuable, saleable products (i.e. bricks, boards, blocks, etc.) that could be "sustainable substitute for equivalents" [37] to traditional construction materials. [38]
Over the last decade, research on plastic loose in the environment has demonstrated clearly the deleterious effects on human health [39] and ecological effects. [40] leading to a steady increase in the awareness of the effects of dumped, recycled and burned plastic. [41] As awareness increased, the focus of grassroots upcycling shifted from creating products of value to a focus on securing plastic from contaminating the biosphere and being industrially processed, leading to the concept of 'plastic sequestration' being coined. [42] Plastic sequestration emerged to focus on the value of 'the absence of plastic from the biosphere' [43] and the value of avoiding the carbon impact of industrial processing.
On January 1, 2018, China banned plastic imports in its National Sword program. [44] Displaced plastic exports from Europe and America were diverted to Indonesia, Turkey, India, Malaysia, and Vietnam [45] where lacking environmental regulations have resulted in wholesale air, water and earth pollution around processing plants. [46] Through popular documentaries [47] and investigative journalism, [48] [45] public skepticism of industrial and government recycling programs began to increase. [49] [50] [51] 2018 [52] Consequently, a movement in western countries turned to methods such as ecobricking and home-made plastic recycling machines, to manage plastic instead.
Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegradation occurs under a specific set of circumstances.
Polymer degradation is the reduction in the physical properties of a polymer, such as strength, caused by changes in its chemical composition. Polymers and particularly plastics are subject to degradation at all stages of their product life cycle, including during their initial processing, use, disposal into the environment and recycling. The rate of this degradation varies significantly; biodegradation can take decades, whereas some industrial processes can completely decompose a polymer in hours.
Eastman Chemical Company is an American company primarily involved in the chemical industry. Once a subsidiary of Kodak, today it is an independent global specialty materials company that produces a broad range of advanced materials, chemicals and fibers for everyday purposes. Founded in 1920 and based in Kingsport, Tennessee, the company operates 36 manufacturing sites worldwide and employs approximately 14,000 people.
Material efficiency is a description or metric ((Mp) (the ratio of material used to the supplied material)) which refers to decreasing the amount of a particular material needed to produce a specific product. Making a usable item out of thinner stock than a prior version increases the material efficiency of the manufacturing process. Material efficiency is associated with Green building and Energy conservation, as well as other ways of incorporating Renewable resources in the building process from start to finish.
Plastic recycling is the processing of plastic waste into other products. Recycling can reduce dependence on landfill, conserve resources and protect the environment from plastic pollution and greenhouse gas emissions. Recycling rates lag those of other recoverable materials, such as aluminium, glass and paper. From the start of production through to 2015, the world produced some 6.3 billion tonnes of plastic waste, only 9% of which has been recycled, and only ~1% has been recycled more than once. Of the remaining waste, 12% was incinerated and 79% either sent to landfill or lost into the environment as pollution.
Bioplastics are plastic materials produced from renewable biomass sources, such as vegetable fats and oils, corn starch, straw, woodchips, sawdust, recycled food waste, etc. Some bioplastics are obtained by processing directly from natural biopolymers including polysaccharides and proteins, while others are chemically synthesised from sugar derivatives and lipids from either plants or animals, or biologically generated by fermentation of sugars or lipids. In contrast, common plastics, such as fossil-fuel plastics are derived from petroleum or natural gas.
Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source. WtE is a form of energy recovery. Most WtE processes generate electricity and/or heat directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels, often derived from the product syngas.
Polyethylene or polythene film biodegrades naturally, albeit over a long period of time. Methods are available to make it more degradable under certain conditions of sunlight, moisture, oxygen, and composting and enhancement of biodegradation by reducing the hydrophobic polymer and increasing hydrophilic properties.
Biodegradable plastics are plastics that can be decomposed by the action of living organisms, usually microbes, into water, carbon dioxide, and biomass. Biodegradable plastics are commonly produced with renewable raw materials, micro-organisms, petrochemicals, or combinations of all three.
Commodity plastics or commodity polymers are plastics produced in high volumes for applications where exceptional material properties are not needed. In contrast to engineering plastics, commodity plastics tend to be inexpensive to produce and exhibit relatively weak mechanical properties. Some examples of commodity plastics are polyethylene, polypropylene, polystyrene, polyvinyl chloride, and poly(methyl methacrylate) .Globally, the most widely used thermoplastics include both polypropylene and polyethylene. Products made from commodity plastics include disposable plates, disposable cups, photographic and magnetic tape, clothing, reusable bags, medical trays, and seeding trays.
This is a glossary of environmental science.
Sustainable packaging is the development and use of packaging which results in improved sustainability. This involves increased use of life cycle inventory (LCI) and life cycle assessment (LCA) to help guide the use of packaging which reduces the environmental impact and ecological footprint. It includes a look at the whole of the supply chain: from basic function, to marketing, and then through to end of life (LCA) and rebirth. Additionally, an eco-cost to value ratio can be useful The goals are to improve the long term viability and quality of life for humans and the longevity of natural ecosystems. Sustainable packaging must meet the functional and economic needs of the present without compromising the ability of future generations to meet their own needs. Sustainability is not necessarily an end state but is a continuing process of improvement.
Oxo-degradation is a process of plastic degradation utilizing oxidation to reduce the molecular weight of plastic, rendering the material accessible to bacterial and fungal decomposition. To change the Molecular structure in order to break down under sunlight, the plastic can be broken down and eaten by micro-organisms. Oxo-degradable plastics- composed of polymers such as polyethylene (PE) or polypropylene (PP) -contain a prodegradant catalyst, typically a salt of manganese or iron.
The environmental impact of agriculture is the effect that different farming practices have on the ecosystems around them, and how those effects can be traced back to those practices. The environmental impact of agriculture varies widely based on practices employed by farmers and by the scale of practice. Farming communities that try to reduce environmental impacts through modifying their practices will adopt sustainable agriculture practices. The negative impact of agriculture is an old issue that remains a concern even as experts design innovative means to reduce destruction and enhance eco-efficiency. Though some pastoralism is environmentally positive, modern animal agriculture practices tend to be more environmentally destructive than agricultural practices focused on fruits, vegetables and other biomass. The emissions of ammonia from cattle waste continue to raise concerns over environmental pollution.
Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems. Most modern plastics are derived from fossil fuel-based chemicals like natural gas or petroleum; however, recent industrial methods use variants made from renewable materials, such as corn or cotton derivatives.
Recycling can be carried out on various raw materials. Recycling is an important part of creating more sustainable economies, reducing the cost and environmental impact of raw materials. Not all materials are easily recycled, and processing recyclable into the correct waste stream requires considerable energy. Some particular manufactured goods are not easily separated, unless specially process therefore have unique product-based recycling processes.
An ecobrick is a plastic bottle densely packed with used plastic to create a reusable building block that achieves plastic sequestration. These plastic bottles are precisely packed with clean and dry used plastic to avoid the growth of bacteria Ecobricks can be used to produce various items, including furniture, garden walls and other structures. Ecobricks are produced primarily as a means of managing consumed plastic by sequestering it and containing it safely, by terminally reducing the net surface area of the packed plastic to effectively secure the plastic from degrading into toxins and microplastics. Ecobricking is a both an individual and collaborative endeavour. The ecobricking movement promotes the personal ecobricking process as a means to raise awareness of the consequences of consumption and the dangers of plastic. It also promotes the collaborative process as a means to encourage communities to take collective responsibility for their used plastic and to use it to produce a useful product.
Plastic pollution is the accumulation of plastic objects and particles in the Earth's environment that adversely affects humans, wildlife and their habitat. Plastics that act as pollutants are categorized by size into micro-, meso-, or macro debris. Plastics are inexpensive and durable, making them very adaptable for different uses; as a result, manufacturers choose to use plastic over other materials. However, the chemical structure of most plastics renders them resistant to many natural processes of degradation and as a result they are slow to degrade. Together, these two factors allow large volumes of plastic to enter the environment as mismanaged waste which persists in the ecosystem and travels throughout food webs.
The economics of plastics processing is determined by the type of process. Plastics can be processed with the following methods: machining, compression molding, transfer molding, injection molding, extrusion, rotational molding, blow molding, thermoforming, casting, forging, and foam molding. Processing methods are selected based on equipment cost, production rate, tooling cost, and build volume. High equipment and tooling cost methods are typically used for large production volumes whereas low - medium equipment cost and tooling cost methods are used for low production volumes. Compression molding, transfer molding, injection molding, forging, and foam molding have high equipment and tooling cost. Lower cost processes are machining, extruding, rotational molding, blow molding, thermoforming, and casting. A summary of each process and its cost is displayed in figure 1.
China's waste import ban, instated at the end of 2017, prevented foreign inflows of waste products. Starting in early 2018, the government of China, under Operation National Sword, banned the import of several types of waste, including plastics with a contamination level of above 0.05 percent. The ban has greatly affected recycling industries worldwide, as China had been the world's largest importer of waste plastics and processed hard-to-recycle plastics for other countries, especially in the West.