Plug nozzle

Last updated

The plug nozzle is a type of nozzle which includes a centerbody or plug around which the working fluid flows. Plug nozzles have applications in aircraft, rockets, and numerous other fluid flow devices.

Contents

Hoses

Typical plug-nozzle garden sprayer with a trigger-pull lever (at the back) to control the position of the plug and valve. Plug nozzle garden sprayer.jpg
Typical plug-nozzle garden sprayer with a trigger-pull lever (at the back) to control the position of the plug and valve.

Common garden hose trigger nozzles are a simple example of the plug nozzle and its method of operation. In this example the nozzle consists of a conical or bell shaped opening with a plug on a movable rod positioned in front of the nozzle. The plug looks similar to a poppet valve. The stem of the valve runs back through the body of the nozzle body to a "trigger", normally a long lever running down the back of the nozzle assembly. A spring keeps the valve pressed against the opening under normal use, thereby providing a failsafe cut-off that stops the flow of water when the nozzle is dropped.

When water is supplied to the hose, it flows through the nozzle body to the opening, where it would normally flow straight forward in a stream. Just after leaving the opening it encounters the plug, which deflects the water sideways through an angle. After travelling a short distance the water encounters the outside of the nozzle opening, which deflects it forward again. This two-step process causes the water to be ejected in a ring-shaped pattern, which causes less water to strike any one location, and thereby reduces erosion while also making it easier to water larger areas.

The shaping of the plug and the nozzle opening allows the angle of the ring to be adjusted. Normally this is shaped so that when the plug is pulled back toward the opening it both partially cuts off the water flow, as well as causing it to spread out to the widest possible angle. This can be used for "misting" plants. When the trigger is pushed down further, the plug moves away from the opening, causing less blockage and disruption of the flow, ultimately allowing the water to form back into a stream.

In rockets

Plug nozzles belong to a class of altitude compensating nozzles, much like the aerospike, which, unlike traditional designs, maintains its efficiency at a wide range of altitudes. [1]

Similar to the garden hose example, plug nozzles use a shaped rocket nozzle with a poppet-shaped plug to allow the pattern of the rocket exhaust to be changed. This is used to adjust for changes in altitude; at lower altitudes the plug is pulled back to cause the exhaust to spread out, while at higher altitudes the lower air pressure will cause this to happen naturally. An alternative construction for the same basic concept is to use two nozzles, one inside the other, and adjust the distance between them. This pattern has the advantage of better control over the exhaust and simpler cooling arrangements.

Confusingly, the term "plug nozzle" may also be used to refer to an entirely different class of engine nozzles, the aerospikes. In theory the aerospike should look roughly like a lance, with a wide base and long tapering forebody. However, the "spike" portion can be cut off with only minor effects on performance, leaving just the base section. This looks very similar to a common drain plug or bung, and leads to widespread use of the term "plug nozzle" for this design as well.

In aircraft and missiles

Sectioned Jumo 004 exhaust nozzle, showing the Zwiebel restrictive body Jumo 004 im Technikmuseum Hugo Junkers Dessau 2010-08-06 Detail 03.jpg
Sectioned Jumo 004 exhaust nozzle, showing the Zwiebel restrictive body

The jet-engine plug nozzle has its origins in rocketry [2] but has also been studied over the years, but not used, for supersonic cruise aircraft such as the Boeing SST, [3] the proposed General Electric Variable Cycle Engine, with its acoustic plug nozzle, [4] and Concorde. However, it was used for the AGM-28 Hound Dog missile and the Tu-144 airliner. The plug / "external-expanding" nozzle has a central plug and a freely-expanding supersonic jet rather than a diverging cone surface to contain the internal supersonic expansion as in a delaval convergent-divergent nozzle (con-di) nozzle. The Pratt & Whitney J52 aircraft engine used in the supersonic AGM-28 Hound Dog missile used a plug nozzle which performed better over the missile's flight envelope than either a convergent or a con-di nozzle. [5] A translating center-body was used on the non-afterburning Kolesov RD-36-51A engine used for the Tupolev Tu-144D supersonic airliner. The center-body was perforated and compressed air forced into the exhaust jet through the perforations to attenuate the noise. [6] Weight and cooling are typical concerns with aircraft plug nozzles. [7] A plug nozzle design evaluated at the National Gas Turbine Establishment [8] was rejected for the Concorde engine due to the weight penalty from the required variable features and concerns about adequate plug cooling during reheat operation. [9] Plug nozzle model tests have shown reduced noise levels compared to traditional con-di nozzles. [10]

Propelling nozzles for subsonic aircraft have used a center-body/bullet/cone to give the nozzle exit area required to set an axial compressor running-line correctly on its map. The first operational German turbojet engines with axial compressors, the Jumo 004 and BMW 003, needed a different exhaust nozzle areas for running properly at each of the operating regimes: start/idle, climb, high speed, high altitude. [11] A nozzle with a fore/aft-translating "bullet" restrictive body in the center was chosen for each design. It provided area control with relatively simple actuation and matched the annular shape of the turbine exhaust.

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Jet engine</span> Aircraft engine that produces thrust by emitting a jet of gas

A jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, or pulse jet. In general, jet engines are internal combustion engines.

<span class="mw-page-title-main">Turbofan</span> Airbreathing jet engine designed to provide thrust by driving a fan

The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the turbo portion refers to a gas turbine engine which achieves mechanical energy from combustion, and the fan, a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

<span class="mw-page-title-main">Aerospike engine</span> Type of rocket engine that maintains its aerodynamic efficiency across a wide range of altitudes

The aerospike engine is a type of rocket engine that maintains its aerodynamic efficiency across a wide range of altitudes. It belongs to the class of altitude compensating nozzle engines. Aerospike engines have been studied for several years and are the baseline engines for many single-stage-to-orbit (SSTO) designs and were also a strong contender for the Space Shuttle main engine. However, no such engine is in commercial production, although some large-scale aerospikes are in testing phases.

<span class="mw-page-title-main">Expanding nozzle</span>

The expanding nozzle is a type of rocket nozzle that, unlike traditional designs, maintains its efficiency at a wide range of altitudes. It is a member of the class of altitude compensating nozzles, a class that also includes the plug nozzle and aerospike. While the expanding nozzle is the least technically advanced and simplest to understand from a modeling point of view, it also appears to be the most difficult design to build.

<span class="mw-page-title-main">Turbojet</span> Airbreathing jet engine which is typically used in aircraft

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

<span class="mw-page-title-main">Rocket engine</span> Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

<span class="mw-page-title-main">Nozzle</span> Device used to direct the flow of a fluid

A nozzle is a device designed to control the direction or characteristics of a fluid flow as it exits an enclosed chamber or pipe.

<span class="mw-page-title-main">Afterburner</span> Adds additional thrust to an engine at the cost of increased fuel consumption

An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of increased fuel consumption which limits its use to short periods. This aircraft application of "reheat" contrasts with the meaning and implementation of "reheat" applicable to gas turbines driving electrical generators and which reduces fuel consumption.

<span class="mw-page-title-main">Bypass ratio</span> Proportion of ducted compared to combusted air in a turbofan engine

The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.

<span class="mw-page-title-main">Thrust vectoring</span> Facet of ballistics and aeronautics

Thrust vectoring, also known as thrust vector control (TVC), is the ability of an aircraft, rocket, or other vehicle to manipulate the direction of the thrust from its engine(s) or motor(s) to control the attitude or angular velocity of the vehicle.

<span class="mw-page-title-main">Rocketdyne J-2</span> Rocket engine

The J-2 is a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the U.S. by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.

<span class="mw-page-title-main">Pratt & Whitney J58</span> High-speed jet engine by Pratt & Whitney

The Pratt & Whitney J58 is an American jet engine that powered the Lockheed A-12, and subsequently the YF-12 and the SR-71 aircraft. It was an afterburning turbojet engine with a unique compressor bleed to the afterburner that gave increased thrust at high speeds. Because of the wide speed range of the aircraft, the engine needed two modes of operation to take it from stationary on the ground to 2,000 mph (3,200 km/h) at altitude. It was a conventional afterburning turbojet for take-off and acceleration to Mach 2 and then used permanent compressor bleed to the afterburner above Mach 2. The way the engine worked at cruise led it to be described as "acting like a turboramjet". It has also been described as a turboramjet based on incorrect statements describing the turbomachinery as being completely bypassed.

A propelling nozzle is a nozzle that converts the internal energy of a working gas into propulsive force; it is the nozzle, which forms a jet, that separates a gas turbine, or gas generator, from a jet engine.

<span class="mw-page-title-main">Rocket engine nozzle</span> Type of propelling nozzle

A rocket engine nozzle is a propelling nozzle used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.

<span class="mw-page-title-main">Variable cycle engine</span> Aircraft propulsion system efficient at a range of speeds higher and lower than sounds

A variable cycle engine (VCE), also referred to as adaptive cycle engine (ACE), is an aircraft jet engine that is designed to operate efficiently under mixed flight conditions, such as subsonic, transonic and supersonic.

<span class="mw-page-title-main">Bell nozzle</span>

The bell-shaped or contour nozzle is probably the most commonly used shaped rocket engine nozzle. It has a high angle expansion section right behind the nozzle throat; this is followed by a gradual reversal of nozzle contour slope so that at the nozzle exit the divergence angle is small, usually less than a 10 degree half angle.

<span class="mw-page-title-main">Rolls-Royce/Snecma Olympus 593</span> 1960s British/French turbojet aircraft engine

The Rolls-Royce/Snecma Olympus 593 was an Anglo-French turbojet with reheat (afterburners), which powered the supersonic airliner Concorde. It was initially a joint project between Bristol Siddeley Engines Limited (BSEL) and Snecma, derived from the Bristol Siddeley Olympus 22R engine. Rolls-Royce Limited acquired BSEL in 1966 during development of the engine, making BSEL the Bristol Engine Division of Rolls-Royce.

<span class="mw-page-title-main">Components of jet engines</span> Brief description of components needed for jet engines

This article briefly describes the components and systems found in jet engines.

An airbreathing jet engine is a jet engine in which the exhaust gas which supplies jet propulsion is atmospheric air, which is taken in, compressed, heated, and expanded back to atmospheric pressure through a propelling nozzle. Compression may be provided by a gas turbine, as in the original turbojet and newer turbofan, or arise solely from the ram pressure of the vehicle's velocity, as with the ramjet and pulsejet.

The familiar study of jet aircraft treats jet thrust with a "black box" description which only looks at what goes into the jet engine, air and fuel, and what comes out, exhaust gas and an unbalanced force. This force, called thrust, is the sum of the momentum difference between entry and exit and any unbalanced pressure force between entry and exit, as explained in "Thrust calculation".

References

  1. O'Leary, R.A.; Beck, J. E. (Spring 1992). "Nozzle Design". Threshold. Pratt & Whitney Rocketdyne. Archived from the original on 2010-04-02.
  2. Aukerman, Carl A. (August 1, 1991). "Plug nozzles: The ultimate customer driven propulsion system". Archived from the original on October 5, 2021. Retrieved July 25, 2018 via ntrs.nasa.gov.
  3. Stitt, Leonard E. (May 1, 1990). "Exhaust Nozzles for Propulsion Systems with Emphasis on Supersonic Cruise Aircraft". ntrs.nasa.gov. p. 31. Archived from the original on October 5, 2021. Retrieved July 25, 2018.
  4. "Archived copy". Archived from the original on 2018-07-26. Retrieved 2018-07-25.{{cite web}}: CS1 maint: archived copy as title (link)
  5. The Engines of Pratt & Whitney, Jack Connors 2010, ISBN   978-1-60086-711-8, p.276
  6. Tupolev Tu-114' Gordon, Komissarov and Rigmant, Schiffer Publishing Ltd. 2015, ISBN   978-0-7643-4894-5, p.188
  7. Stitt, Leonard E. (May 1990). "Exhaust Nozzles for Propulsion Systems With Emphasis on Supersonic Cruise Aircraft" (PDF). Reference Publication 1235. NASA. Archived (PDF) from the original on 17 May 2010. Retrieved 14 July 2012. (42.1 Mb)
  8. "Archived copy" (PDF). Archived from the original (PDF) on 2015-10-01. Retrieved 2018-07-25.{{cite web}}: CS1 maint: archived copy as title (link)
  9. A Case Study By Aerospatiale And British Aerospace On The Concorde,Rech and Leyman, AIAA Professional Study Series, p. 6-10
  10. Journal of Sound and Vibration Volume 206, Issue 2, 18 September 1997, Pages 169–194.
  11. Jet Propulsion Progress, First edition, Neville and Silsbee, McGraw-Hill Book company, Inc. New York and London, 1948