Polar overdominance

Last updated
This figure depicts a generic graphical comparison of polar over dominance and polar under dominance. Differential inheritance is shown in a parent-of-origin type fashion in this case. Polar over- VS. under-dominance.jpg
This figure depicts a generic graphical comparison of polar over dominance and polar under dominance. Differential inheritance is shown in a parent-of-origin type fashion in this case.

Polar overdominance is a unique form of inheritance originally described in livestock, with relevant examples in humans [1] and mice being discovered shortly after. The term polar is used to describe this type of overdominance because the phenotype of the heterozygote is more prevalent than the other genotypes. This polarity is shown as differential phenotype is only present in one of the heterozygote configurations when the recessive allele is inherited in a parent of origin type fashion. [2] Polar overdominance differs from regular overdominance (also known as heterozygote advantage) where both heterozygote genotypes display a phenotype that has increased fitness regardless of the parent of origin. Studying this type of inheritance could have practical applications in preventative medicine for humans as well as a variety of other agricultural applications.

Contents

Discovery

The first described occurrence of polar overdominance in sheep was shown after finding that a mutant allele, called callipyge (after Venus Callipyge), must be inherited from the father to cause a condition called muscle hypertrophy. Muscle hypertrophy in the offspring is caused by an increase in the size and proportion of muscle fibers, namely the fast-twitch muscle fibers. [3] This increase is generally located in the hind quarters and torso. Muscle hypertrophy only manifests itself in the offspring approximately one month after birth. [4] Polar overdominance shows evidence of an imprinted locus displayed as the difference between the expression of heterozygote phenotypes in a parent-of-origin type fashion. It was discovered that a single-nucleotide polymorphism in the DLK1DIO3 imprinted gene cluster affects the gene expression of paternal allele-specific genes and several maternal allele-specific long non-coding RNA and microRNA. [5] Ectopic expression of the Delta-like 1 homologue (DLK1) and the Retrotransposon-like 1 (RTL1/PEG11) genes which are paternally expressed proteins in skeletal muscle are a hallmark of these mutant individuals. [6]

Agricultural application

More and more studies have identified quantitative trait loci (QTL) that show evidence of genomic imprinting in farm animals other than sheep. [7] After polar overdominant inheritance was discovered to be the cause of muscular hypertrophy in sheep, the ortholog for the human DLK1 gene (DLK1-GTL2 intergenic region) was studied in pigs to try to determine the effects of inheritance on ham weight. The original purpose of this study was to find the connection between genetics and ham weight to try to produce pigs that were abnormally large compared to the average. Before conducting this research, it was also hypothesized that the locus for ham weight was related to the ovine callipyge locus in sheep. After researching it was discovered that the two regions were likely unrelated due to different forms of parental inheritance exhibited in both cases and a relatively large physical distance between the loci on the chromosome. Unlike the form of paternal polar overdominance that occurs in the ovine callipyge locus, the locus that controls ham weight operates in a maternal polar overdominant fashion. [8]

In humans

The term polar is used to describe this type of inheritance because the phenotype of one heterozygote is expressed at a level higher than other genotypes for the same locus including those displaying either homozygous geneotype. [2] This unique form of inheritance has largely been studied in non-human mammals since 1996 [4] until it was first described in humans in 2008. In humans, the inheritance of the alleles for the DLK1 gene (imprinted in eutherian mammals) is linked to a higher rate of obesity in the F1 generation. [1] The imprinted DLK1-GTL2 in sheep is homologous to the DLK1 gene in humans, and includes the callipyge locus. [9] There has been evidence to show that by screening potential fathers for a mutation at the DLK1 locus one could potentially see if their child is at a higher risk for obesity. [10] Individuals who inherit this mutant allele from their father are more likely to show signs of obesity because the DLK1 gene is key in adipogenesis, or more simply the formation of fat cells. [11]

See also

Related Research Articles

An allele is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. The word is a short form of "allelomorph".

<span class="mw-page-title-main">Heredity</span> Passing of traits to offspring from the speciess parents or ancestor

Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents. Through heredity, variations between individuals can accumulate and cause species to evolve by natural selection. The study of heredity in biology is genetics.

Genomic imprinting is an epigenetic phenomenon that causes genes to be expressed or not, depending on whether they are inherited from the mother or the father. Genes can also be partially imprinted. Partial imprinting occurs when alleles from both parents are differently expressed rather than complete expression and complete suppression of one parent's allele. Forms of genomic imprinting have been demonstrated in fungi, plants and animals. In 2014, there were about 150 imprinted genes known in mice and about half that in humans. As of 2019, 260 imprinted genes have been reported in mice and 228 in humans.

<span class="mw-page-title-main">Mendelian inheritance</span> Type of biological inheritance

Mendelian inheritance is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularized by William Bateson. These principles were initially controversial. When Mendel's theories were integrated with the Boveri–Sutton chromosome theory of inheritance by Thomas Hunt Morgan in 1915, they became the core of classical genetics. Ronald Fisher combined these ideas with the theory of natural selection in his 1930 book The Genetical Theory of Natural Selection, putting evolution onto a mathematical footing and forming the basis for population genetics within the modern evolutionary synthesis.

<span class="mw-page-title-main">Phenotypic trait</span> Inherited characteristic of an organism

A phenotypic trait, simply trait, or character state is a distinct variant of a phenotypic characteristic of an organism; it may be either inherited or determined environmentally, but typically occurs as a combination of the two. For example, having eye color is a character of an organism, while blue, brown and hazel versions of eye colour are traits. The term trait is generally used in genetics, often to describe phenotypic expression of different combinations of alleles in different individual organisms within a single population, such as the famous purple vs. white flower coloration in Gregor Mendel's pea plants. By contrast, in systematics, the term is character state is employed to describe features that represent fixed diagnostic differences among taxa, such as the absence of tails in great apes, relative to other primate groups.

<span class="mw-page-title-main">Dominance (genetics)</span> One gene variant masking the effect of another in the other copy of the gene

In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a mutation in one of the genes, either new or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child. Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance such as incomplete dominance, in which a gene variant has a partial effect compared to when it is present on both chromosomes, and co-dominance, in which different variants on each chromosome both show their associated traits.

<span class="mw-page-title-main">Punnett square</span> Tabular summary of genetic combinations

The Punnett square is a square diagram that is used to predict the genotypes of a particular cross or breeding experiment. It is named after Reginald C. Punnett, who devised the approach in 1905. The diagram is used by biologists to determine the probability of an offspring having a particular genotype. The Punnett square is a tabular summary of possible combinations of maternal alleles with paternal alleles. These tables can be used to examine the genotypical outcome probabilities of the offspring of a single trait (allele), or when crossing multiple traits from the parents. The Punnett square is a visual representation of Mendelian inheritance. It is important to understand the terms "heterozygous", "homozygous", "double heterozygote", "dominant allele" and "recessive allele" when using the Punnett square method. For multiple traits, using the "forked-line method" is typically much easier than the Punnett square. Phenotypes may be predicted with at least better-than-chance accuracy using a Punnett square, but the phenotype that may appear in the presence of a given genotype can in some instances be influenced by many other factors, as when polygenic inheritance and/or epigenetics are at work.

Heterosis, hybrid vigor, or outbreeding enhancement is the improved or increased function of any biological quality in a hybrid offspring. An offspring is heterotic if its traits are enhanced as a result of mixing the genetic contributions of its parents. The heterotic offspring often has traits that are more than the simple addition of the parents' traits, and can be explained by Mendelian or non-Mendelian inheritance. Typical heterotic/hybrid traits of interest in agriculture are higher yield, quicker maturity, stability, drought tolerance etc.

Balancing selection refers to a number of selective processes by which multiple alleles are actively maintained in the gene pool of a population at frequencies larger than expected from genetic drift alone. Balancing selection is rare compared to purifying selection. It can occur by various mechanisms, in particular, when the heterozygotes for the alleles under consideration have a higher fitness than the homozygote. In this way genetic polymorphism is conserved.

A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. Loci exhibiting heterozygote advantage are a small minority of loci. The specific case of heterozygote advantage due to a single locus is known as overdominance. Overdominance is a rare condition in genetics where the phenotype of the heterozygote lies outside of the phenotypical range of both homozygote parents, and heterozygous individuals have a higher fitness than homozygous individuals.

<span class="mw-page-title-main">Overdominance</span>

Overdominance is a rare condition in genetics where the phenotype of the heterozygote lies outside the phenotypical range of both homozygous parents. Overdominance can also be described as heterozygote advantage regulated by a single genomic locus, wherein heterozygous individuals have a higher fitness than homozygous individuals. However, not all cases of the heterozygote advantage are considered overdominance, as they may be regulated by multiple genomic regions. Overdominance has been hypothesized as an underlying cause for heterosis.

<span class="mw-page-title-main">Non-Mendelian inheritance</span> Type of pattern of inheritance

Non-Mendelian inheritance is any pattern in which traits do not segregate in accordance with Mendel's laws. These laws describe the inheritance of traits linked to single genes on chromosomes in the nucleus. In Mendelian inheritance, each parent contributes one of two possible alleles for a trait. If the genotypes of both parents in a genetic cross are known, Mendel's laws can be used to determine the distribution of phenotypes expected for the population of offspring. There are several situations in which the proportions of phenotypes observed in the progeny do not match the predicted values.

<span class="mw-page-title-main">Agouti-signaling protein</span> Protein-coding gene in the species Homo sapiens

Agouti-signaling protein is a protein that in humans is encoded by the ASIP gene. It is responsible for the distribution of melanin pigment in mammals. Agouti interacts with the melanocortin 1 receptor to determine whether the melanocyte produces phaeomelanin, or eumelanin. This interaction is responsible for making distinct light and dark bands in the hairs of animals such as the agouti, which the gene is named after. In other species such as horses, agouti signalling is responsible for determining which parts of the body will be red or black. Mice with wildtype agouti will be grey, with each hair being partly yellow and partly black. Loss of function mutations in mice and other species cause black fur coloration, while mutations causing expression throughout the whole body in mice cause yellow fur and obesity.

Pseudopseudohypoparathyroidism (PPHP) is an inherited disorder, named for its similarity to pseudohypoparathyroidism in presentation. It is more properly Albright hereditary osteodystrophy although without resistance of parathyroid hormone as frequently seen in that affliction. The term Pseudopseudohypoparathyroidism is used to describe a condition where the individual has the phenotypic appearance of Pseudohypoparathyroidism type 1a, but has normal labs including calcium and PTH.

In medical genetics, compound heterozygosity is the condition of having two or more heterogeneous recessive alleles at a particular locus that can cause genetic disease in a heterozygous state; that is, an organism is a compound heterozygote when it has two recessive alleles for the same gene, but with those two alleles being different from each other. Compound heterozygosity reflects the diversity of the mutation base for many autosomal recessive genetic disorders; mutations in most disease-causing genes have arisen many times. This means that many cases of disease arise in individuals who have two unrelated alleles, who technically are heterozygotes, but both the alleles are defective.

<span class="mw-page-title-main">MEG3</span>

MEG3 is a maternally expressed, imprinted long non-coding RNA gene. At least 12 different isoforms of MEG3 are generated by alternative splicing. Expression of MEG3 is lost in cancer cells. It acts as a growth suppressor in tumour cells, and activates p53. A pituitary transcript variant has been associated with inhibited cell proliferation. Studies in mouse and sheep suggest that an upstream intergenic differentially methylated region (IG-DMR) regulates imprinting of the region. The expression profile in mouse of the co-regulated Meg3 and Dlk1 genes suggests a causative role in the pathologies found in uniparental disomy animals, characterized by defects in skeletal muscle maturation, bone formation, placenta size and organization and prenatal lethality. The sheep homolog is associated with the callipyge mutation which in heterozygous individuals affects a muscle-specific long-range control element located in the DLK1-GTL2 intergenic region and results in the callipyge muscular hypertrophy. The non-Mendelian inheritance pattern, known as polar overdominance, likely results from the combination of the cis-effect on the expression levels of genes in the DLK1-GTL2 imprinted domain, and trans interaction between the products of reciprocally imprinted genes.

<span class="mw-page-title-main">Zygosity</span> Degree of similarity of the alleles in an organism

Zygosity is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism.

In molecular biology, Maternally expressed 8, also known as MEG8 or Rian, is a long non-coding RNA. It is an imprinted gene, which is maternally expressed. It is expressed in the nucleus and is preferentially expressed in skeletal muscle.

<span class="mw-page-title-main">RTL1</span> Protein-coding gene in the species Homo sapiens

RTL1 is a retrotransposon derived protein coding gene. It is also known as PEG11 and is a paternally expressed imprinted gene, part of genomic imprinting. RTL1 plays an important role in the maintenance of fetal capillaries and is expressed in high quantities during late stage of fetal development. The expression of this gene is important for the development of the placenta, the fetus-maternal interface. Because the placenta is the first organ to form during the development of an embryo, problems in its establishment and biological role lead to complications during gestation. This organ maintains the fetus throughout the pregnancy and is therefore sensitive to disruptions. Studies in mice suggest that disruption of the RTL1 concentration, whether increasing or decreasing the amount of this protein coding gene, can lead to serious errors in the conservation of placental fetal capillaries. RTL1 knockout mice have shown obstruction in fetal development along with late fetal/neonatal death. Studies from sheep homologs suggest that high expression levels of RTL1 can lead to skeletal muscle hypertrophy This is due to over-expression patterns in the paternal allele specific gene.

The agouti gene, the Agouti-signaling protein (ASIP) is responsible for variations in color in many species. Agouti works with extension to regulate the color of melanin which is produced in hairs. The agouti protein causes red to yellow pheomelanin to be produced, while the competing molecule α-MSH signals production of brown to black eumelanin. In wildtype mice, alternating cycles of agouti and α-MSH production cause agouti coloration. Each hair has bands of yellow which grew during agouti production, and black which grew during α-MSH production. Wildtype mice also have light-colored bellies. The hairs there are a creamy color the whole length because the agouti protein was produced the whole time the hairs were growing.

References

  1. 1 2 Wermter, Anne-Kathrin; Scherag, André; Meyre, David; Reichwald, Kathrin; Durand, Emmanuelle; Nguyen, Thuy Trang; Koberwitz, Kerstin; Lichtner, Peter; Meitinger, Thomas (2008-04-09). "Preferential reciprocal transfer of paternal/maternal DLK1 alleles to obese children: first evidence of polar overdominance in humans". European Journal of Human Genetics. 16 (9): 1126–1134. doi: 10.1038/ejhg.2008.64 . ISSN   1018-4813. PMID   18398438.
  2. 1 2 Lawson, Heather A.; Cheverud, James M.; Wolf, Jason B. (2013-09-01). "Genomic imprinting and parent-of-origin effects on complex traits". Nature Reviews Genetics. 14 (9): 609–617. doi:10.1038/nrg3543. PMC   3926806 . PMID   23917626.
  3. Georges, M.; Charlier, C.; Smit, M.; Davis, E.; Shay, T.; Tordoir, X.; Takeda, H.; Caiment, F.; Cockett, N. (2004-01-01). "Toward Molecular Understanding of Polar Overdominance at the Ovine Callipyge Locus". Cold Spring Harbor Symposia on Quantitative Biology. 69: 477–484. doi: 10.1101/sqb.2004.69.477 . ISSN   0091-7451. PMID   16117683.
  4. 1 2 M Georges, N Cockett. The ovine callipyge locus: a paradigm illustrating the importance of non-Mendelian genetics in livestock. Reproduction, Nutrition, Development, EDP Sciences, 1996, 36 (6), pp.651-657.
  5. Bidwell, C. A.; Waddell, J. N.; Taxis, T. M.; Yu, H.; Tellam, R. L.; Neary, M. K.; Cockett, N. E. (2014-08-01). "New insights into polar overdominance in callipyge sheep". Animal Genetics. 45: 51–61. doi:10.1111/age.12132. ISSN   1365-2052. PMID   24990181.
  6. Xu, Xuewen; Ectors, Fabien; Davis, Erica E.; Pirottin, Dimitri; Cheng, Huijun; Farnir, Frédéric; Hadfield, Tracy; Cockett, Noelle; Charlier, Carole (2015-10-16). "Ectopic Expression of Retrotransposon-Derived PEG11/RTL1 Contributes to the Callipyge Muscular Hypertrophy". PLOS ONE. 10 (10): e0140594. Bibcode:2015PLoSO..1040594X. doi: 10.1371/journal.pone.0140594 . ISSN   1932-6203. PMC   4608697 . PMID   26474044.
  7. Groenen, Martien A. M. (2004-01-01). Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics. John Wiley & Sons, Ltd. doi:10.1002/047001153x.g103311. ISBN   9780470011539.
  8. Boysen, T. J.; Tetens, J.; Thaller, G. (2010-10-01). "Detection of a quantitative trait locus for ham weight with polar overdominance near the ortholog of the callipyge locus in an experimental pig F2 population". Journal of Animal Science. 88 (10): 3167–3172. doi:10.2527/jas.2009-2565. ISSN   1525-3163. PMID   20581286.
  9. Lewis, Annabelle; Redrup, Lisa (2005). "Genetic Imprinting: Conflict at the Callipyge Locus". Current Biology. 15 (8): R291–R294. doi: 10.1016/j.cub.2005.04.003 . PMID   15854893.
  10. Huypens, Peter; Sass, Steffen; Wu, Moya; Dyckhoff, Daniela; Tschöp, Matthias; Theis, Fabian; Marschall, Susan; Angelis, Martin Hrabě de; Beckers, Johannes (2016). "Epigenetic germline inheritance of diet-induced obesity and insulin resistance". Nature Genetics. 48 (5): 497–499. doi:10.1038/ng.3527. PMID   26974008. S2CID   205351366.
  11. Wang, Yuhui; Sul, Hei Sook (2009-03-01). "Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9". Cell Metabolism. 9 (3): 287–302. doi:10.1016/j.cmet.2009.01.013. ISSN   1932-7420. PMC   2673480 . PMID   19254573.

Further reading