A combinatorial interpretation is that the poly-Bernoulli numbers of negative index enumerate the set of by (0,1)-matrices uniquely reconstructible from their row and column sums. Also it is the number of open tours by a biased rook on a board (see A329718 for definition).
The Poly-Bernoulli number satisfies the following asymptotic:[1]
For a positive integer n and a prime number p, the poly-Bernoulli numbers satisfy
has no solution for integers x, y, z, n > 2; an analog of Fermat's Last Theorem. Moreover, there is an analogue of Poly-Bernoulli numbers (like Bernoulli numbers and Euler numbers) which is known as Poly-Euler numbers.
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.