Ponseti method

Last updated

Ponseti method
Specialty orthopedic

The Ponseti method is a manipulative technique that corrects congenital clubfoot without invasive surgery. It was developed by Ignacio V. Ponseti of the University of Iowa Hospitals and Clinics, US, in the 1950s, and was repopularized in 2000 by John Herzenberg in the US and Europe and in Africa by NHS surgeon Steve Mannion. It is a standard treatment for clubfoot.[ citation needed ]

Contents

Description

Ponseti treatment was introduced in UK in the late 1990s and widely popularized around the country by NHS physiotherapist Steve Wildon. The manipulative treatment of club foot deformity is based on the inherent properties of the connective tissue, cartilage, and bone, which respond to the proper mechanical stimuli created by the gradual reduction of the deformity. The ligaments, joint capsules, and tendons are stretched under gentle manipulations. A plaster cast is applied after each manipulation to retain the degree of correction and soften the ligaments. The displaced bones are thus gradually brought into the correct alignment with their joint surfaces progressively remodeled yet maintaining congruency. After two months of manipulation and casting the foot appears slightly over-corrected. After a few weeks in splints, however, the foot looks normal.[ citation needed ]

Proper foot manipulations require a thorough understanding of the anatomy and kinematics of the normal foot and of the deviations of the tarsal bones in the clubfoot. Poorly conducted manipulations will further complicate the clubfoot deformity. The non-operative treatment will succeed better if it is started a few days or weeks after birth and if the podiatrist understands the nature of the deformity and possesses manipulative skill and expertise in plaster-cast applications. [1]

The Ponseti technique is painless, fast, cost-effective and successful in almost 100% of all congenital clubfoot cases. The Ponseti method is endorsed and supported by the World Health Organization, [2] [3] National Institutes of Health, [4] American Academy of Orthopedic Surgeons, [5] Pediatric Orthopedic Society of North America, [6] European Pediatric Orthopedic Society, [7] CURE International, [8] STEPS Charity Worldwide, [9] STEPS Charity South Africa, [10] and A Leg to Stand On (India). [11]

Procedure

The calcaneal internal rotation (adduction) and plantar flexion is the key deformity. The foot is adducted and plantar-flexed at the subtalar joint, and the goal is to abduct the foot and dorsiflex it. In order to achieve correction of the clubfoot, the calcaneus should be allowed to rotate freely under the talus bone, which also is free to rotate in the ankle mortise. The correction takes place through the normal arc of the subtalar joint. This is achieved by placing the index finger of the operator on the medial malleolus to stabilize the leg and levering on the thumb placed on the lateral aspect head of the talus while abducting the forefoot in supination. Forcible attempts at correcting the heel varus by abducting the forefoot while applying counter pressure at the calcaneocuboid joint prevents the calcaneus from abducting and therefore everting.

Foot cavus increases when the forefoot is pronated. If cavus is present, the first step in the manipulation process is to supinate the forefoot by gently lifting the dropped first metatarsal to correct the cavus. Once the cavus is corrected, the forefoot can be abducted.

Pronation of the foot also causes the calcaneus to jam under the talus. The calcaneum cannot rotate and stays in varu; the cavus then increases, resulting in a bean-shaped foot. At the end of the first step, the foot is maximally abducted but never pronated.

The manipulation is carried out in the cast room, with the baby having been fed just prior to the treatment or even during the treatment. After the foot is manipulated, a long leg cast is applied to hold the correction. Initially, the short leg component is applied. The cast should be snug with minimal but adequate padding. The authors[ who? ] paint or spray the limb with tincture of benzoin to allow adherence of the padding to the limb. The authors[ who? ] prefer to apply additional padding strips along the medial and lateral borders to facilitate safe removal of the cast with a cast saw. The cast must incorporate the toes right up to the tips but not squeeze the toes or obliterate the transverse arch. The cast is molded to contour around the heel while abducting the forefoot against counter pressure on the lateral aspect of the head of the talus. The knee is flexed to 90° for the long leg component of the cast. The parents can soak these casts for 30–45 minutes prior to removal with a plaster knife. The authors'[ who? ] preferred method is to use the oscillating plaster saw for cast removal. The cast is bivalved and removed. The cast then is reconstituted by coapting the two halves. This allows for monitoring of the progress of the forefoot abduction and, in the later stages, the amount of dorsiflexion or equinus correction.

Forcible correction of the equinus (and cavus) by dorsiflexion against a tight Achilles tendon results in a spurious correction through a break in the midfoot, resulting in a rocker-bottom foot. The cavus should be separately treated as outlined in step 2, and the equinus should be corrected without causing a midfoot break. It generally takes up to 4–7 casts to achieve maximum foot abduction. The casts are changed weekly. The foot abduction (correction) can be considered adequate when the thigh-foot axis is 60°. After maximal foot abduction is obtained, most cases require a percutaneous Achilles tenotomy. This is performed in the cast room under aseptic conditions. The local area is anesthetized with a combination of a topical lignocaine preparation (e.g. EMLA cream) and minimal local infiltration of lidocaine. The tenotomy is performed through a stab incision with a round tip (#6400) Beaver blade. The wound is closed with a single absorbable suture or with adhesive strips. The final cast is applied with the foot in maximum dorsiflexion, and the foot is held in the cast for 2–3 weeks.

Following the manipulation and casting phase, the feet are fitted with open-toed straight-laced shoes attached to a Denis Browne bar. The affected foot is abducted (externally rotated) to 70° with the unaffected foot set at 45° of abduction. The shoes also have a heel counter bumper to prevent the heel from slipping out of the shoe. The shoes are worn for 23 hours a day for three months and are worn at night and during naps for up to three years.

In 10–30% of cases, a tibialis anterior tendon transfer to the lateral cuneiform is performed when the child is approximately three years of age. This gives lasting correction of the forefoot, preventing metatarsus adductus and foot inversion. This procedure is indicated in a child aged 2–2.5 years with dynamic supination of the foot. Prior to surgery, cast the foot in a long leg cast for a few weeks to regain the correction.

Related Research Articles

<span class="mw-page-title-main">Foot</span> Anatomical structure found in vertebrates

The foot is an anatomical structure found in many vertebrates. It is the terminal portion of a limb which bears weight and allows locomotion. In many animals with feet, the foot is a separate organ at the terminal part of the leg made up of one or more segments or bones, generally including claws and/or nails.

<span class="mw-page-title-main">Human leg</span> Lower extremity or limb of the human body (foot, lower leg, thigh and hip)

The leg is the entire lower limb of the human body, including the foot, thigh or sometimes even the hip or buttock region. The major bones of the leg are the femur, tibia, and adjacent fibula. The thigh is between the hip and knee, while the calf (rear) and shin (front) are between the knee and foot.

<span class="mw-page-title-main">Bunion</span> Deformity characterized by lateral deviation of the big toe

A bunion, also known as hallux valgus, is a deformity of the MTP joint connecting the big toe to the foot. The big toe often bends towards the other toes and the joint becomes red and painful. The onset of bunions is typically gradual. Complications may include bursitis or arthritis.

<span class="mw-page-title-main">Ankle</span> Region where the foot and the leg meet

The ankle, the talocrural region or the jumping bone (informal) is the area where the foot and the leg meet. The ankle includes three joints: the ankle joint proper or talocrural joint, the subtalar joint, and the inferior tibiofibular joint. The movements produced at this joint are dorsiflexion and plantarflexion of the foot. In common usage, the term ankle refers exclusively to the ankle region. In medical terminology," can refer broadly to the region or specifically to the talocrural joint.

<span class="mw-page-title-main">Calcaneus</span> Bone of the tarsus of the foot

In humans and many other primates, the calcaneus or heel bone is a bone of the tarsus of the foot which constitutes the heel. In some other animals, it is the point of the hock.

<span class="mw-page-title-main">Clubfoot</span> Bone development disease

Clubfoot is a congenital or acquired defect where one or both feet are rotated inward and downward. Congenital clubfoot is the most common congenital malformation of the foot with an incidence of 1 per 1000 births. In approximately 50% of cases, clubfoot affects both feet, but it can present unilaterally causing one leg or foot to be shorter than the other. Most of the time, it is not associated with other problems. Without appropriate treatment, the foot deformity will persist and lead to pain and impaired ability to walk, which can have a dramatic impact on the quality of life.

<span class="mw-page-title-main">Pes cavus</span> Medical condition

Pes cavus, also known as high arch, is a human foot type in which the sole of the foot is distinctly hollow when bearing weight. That is, there is a fixed plantar flexion of the foot. A high arch is the opposite of a flat foot and is somewhat less common.

<span class="mw-page-title-main">Orthopedic cast</span> Medical aid for the treatment of bone fractures

An orthopedic cast, or simply cast, is a shell, frequently made from plaster or fiberglass, that encases a limb to stabilize and hold anatomical structuresmost often a broken bone, in place until healing is confirmed. It is similar in function to a splint.

<span class="mw-page-title-main">Flat feet</span> Foot arch deformity

Flat feet, also called pes planus or fallen arches, is a postural deformity in which the arches of the foot collapse, with the entire sole of the foot coming into complete or near-complete contact with the ground. Sometimes children are born with flat feet (congenital). There is a functional relationship between the structure of the arch of the foot and the biomechanics of the lower leg. The arch provides an elastic, springy connection between the forefoot and the hind foot so that a majority of the forces incurred during weight bearing on the foot can be dissipated before the force reaches the long bones of the leg and thigh.

<span class="mw-page-title-main">Tarsus (skeleton)</span> Bones of the foot

In the human body, the tarsus is a cluster of seven articulating bones in each foot situated between the lower end of the tibia and the fibula of the lower leg and the metatarsus. It is made up of the midfoot and hindfoot.

<span class="mw-page-title-main">Subtalar joint</span>

In human anatomy, the subtalar joint, also known as the talocalcaneal joint, is a joint of the foot. It occurs at the meeting point of the talus and the calcaneus.

<span class="mw-page-title-main">Calcaneal fracture</span> Medical condition

A calcaneal fracture is a break of the calcaneus. Symptoms may include pain, bruising, trouble walking, and deformity of the heel. It may be associated with breaks of the hip or back.

Foot and ankle surgery is a sub-specialty of orthopedics and podiatry that deals with the treatment, diagnosis and prevention of disorders of the foot and ankle. Orthopaedic surgeons are medically qualified, having been through four years of college, followed by 4 years of medical school or osteopathic medical school to obtain an M.D. or D.O. followed by specialist training as a resident in orthopaedics, and only then do they sub-specialise in foot and ankle surgery. Training for a podiatric foot and ankle surgeon consists of four years of college, four years of podiatric medical school (D.P.M.), 3–4 years of a surgical residency and an optional 1 year fellowship.

<span class="mw-page-title-main">Ignacio Ponseti</span>

Ignacio Ponseti, also known as Ignasi Ponsetí i Vives, was a Spanish-American physician, specializing in orthopedics. He was born on 3 June 1914 in Menorca, part of the Balearic Islands, Spain, Ponseti was the son of a watchmaker and spent his childhood helping repair watches. This skill was said to eventually contribute to his abilities as an orthopedist. He served three years as a medic during the Spanish Civil War treating orthopedic injuries of wounded soldiers. He left Spain shortly after the end of the war and became a faculty member and practicing physician at the University of Iowa, where he developed his ground-breaking, non-surgical treatment for the clubfoot defect - the Ponseti Method.

Unlike the flexible flat foot that is commonly encountered in young children, congenital vertical talus is characterized by presence of a very rigid foot deformity. The foot deformity in congenital vertical talus consists of various components, namely a prominent calcaneus caused by the ankle equines or plantar flexion, a convex and rounded sole of the foot caused by prominence of the head of the talus, and a dorsiflexion and abduction of the forefoot and midfoot on the hindfoot. It gets its name from the foot's resemblance to the bottom of a rocking chair. There are two subcategories of congenital vertical talus; namely idiopathic or isolated type, and non-idiopathic type, which may be seen in association with arthrogryposis multiplex congenital, genetic syndromes and other neuromuscular disorders.

<span class="mw-page-title-main">Comparative foot morphology</span> Comparative anatomy

Comparative foot morphology involves comparing the form of distal limb structures of a variety of terrestrial vertebrates. Understanding the role that the foot plays for each type of organism must take account of the differences in body type, foot shape, arrangement of structures, loading conditions and other variables. However, similarities also exist among the feet of many different terrestrial vertebrates. The paw of the dog, the hoof of the horse, the manus (forefoot) and pes (hindfoot) of the elephant, and the foot of the human all share some common features of structure, organization and function. Their foot structures function as the load-transmission platform which is essential to balance, standing and types of locomotion.

Children's feet are smaller than those of adults, not reaching full size until the ages of 13 in girls and 15 in boys. There are correspondingly small sizes of shoes for them. In poor populations and tropical countries, children commonly go barefoot.

<span class="mw-page-title-main">Hope Walks</span> U.S.-based nonprofit organization

Hope Walks, formerly CURE Clubfoot, is a Christian nonprofit organization based in Dillsburg, Pennsylvania, that treats infant clubfoot in developing countries around the world. As of 2019, Hope Walks operates over 130 clinics in 16 countries including Ethiopia, Niger and the Dominican Republic. Since 2006, over 135,000 children have been enrolled in the program for treatment.

Subtalar arthroereisis is a common treatment for symptomatic pes planus, also known as flatfoot. There are two forms of pes planus: rigid flatfoot (RFF) and flexible flatfoot (FFF). The symptoms of the former typically necessitate surgical intervention. The latter may manifest fatigue or pain, but is typically asymptomatic.

References

  1. "Congenital Clubfoot: Common Questions: Orthopaedics: UI Health Topics". Uihealthcare.com. Retrieved December 18, 2011.
  2. "Emergency and Essential Surgery: the backbone of primary health care". Archived from the original on December 1, 2012. Retrieved January 4, 2015.
  3. "Welcome". EFORT. Retrieved December 18, 2011.
  4. "National Institutes of Health". nih.gov. Retrieved December 18, 2011.
  5. "American Academy of Orthopaedic Surgeons". AAOS.org. Retrieved December 18, 2011.
  6. Archived September 13, 2007, at the Wayback Machine
  7. "EPOS". Epos.efort.org. Archived from the original on January 15, 2012. Retrieved December 18, 2011.
  8. http://www.curenetcomm.org/NETCOMMUNITY/Page.aspx?&pid=316&srcid=315 [ dead link ]
  9. "How to treat clubfoot with the Ponseti Method". stepsworldwide.org. Retrieved August 15, 2021.
  10. Mara, Karen (December 9, 2011). "steps.org.za". steps.org.za. Retrieved December 18, 2011.
  11. "ALTSO · A Leg To Stand On · Home". Altso.org. June 12, 2010. Retrieved December 18, 2011.