Position sensitive device

Last updated

A position sensitive device and/or position sensitive detector (PSD) is an optical position sensor (OPS) that can measure a position of a light spot in one or two-dimensions on a sensor surface.

Contents

Principles

PSDs can be divided into two classes which work according to different principles: In the first class, the sensors have an isotropic sensor surface that supplies continuous position data. The second class has discrete sensors in an raster-like structure on the sensor surface that supply local discrete data.

Isotropic Sensors

Design of a PSD using a PIN diode Position Sensitive Device DE.svg
Design of a PSD using a PIN diode

The technical term PSD was first used in a 1957 publication by J.T. Wallmark for lateral photoelectric effect used for local measurements. On a laminar semiconductor, a so-called PIN diode is exposed to a tiny spot of light. This exposure causes a change in local resistance and thus electron flow in four electrodes. From the currents , , and in the electrodes, the location of the light spot is computed using the following equations.

and

The and are simple scaling factors, which permit transformation into coordinates.

An advantage of this process is the continuous measurement of the light spot position with measuring rates up to over 100 kHz. The dependence of local measurement on form and size of the light spot as well as the nonlinear connection are a disadvantage that can be partly compensated by special electrode shapes.

2-D tetra-lateral Position Sensitive Device (PSD)

2-D tetra-lateral position sensitive device (PSD) 2D Position Sensitive Device.png
2-D tetra-lateral position sensitive device (PSD)

A 2-D tetra-lateral PSD is capable of providing continuous position measurement of the incident light spot in 2-D. It consists of a single square PIN diode with a resistive layer. When there is an incident light on the active area of the sensor, photocurrents are generated and collected from four electrodes placed along each side of the square near the boundary. The incident light position can be estimated based on currents collected from the electrodes:

and

The 2-D tetra-lateral PSD has the advantages of fast response, much lower dark current, easy bias application and lower fabrication cost. Its measurement accuracy and resolution is independent of the spot shape and size unlike the quadrant detector which could be easily changed by air turbulence. However, it suffers from the nonlinearity problem. While the position estimate is approximately linear with respect to the real position when the spot is in the center area of the PSD, the relationship becomes nonlinear when the light spot is away from the center. This seriously limits its applications and there are urgent demands for linearity improvement in many applications.

To reduce the nonlinearity of 2-D PSD, a new set of formulae have been proposed to estimate the incident light position (Song Cui, Yeng Chai Soh:Linearity indices and linearity improvement of 2-D tetra-lateral position sensitive detector. IEEE Transactions on Electron Devices, Vol. 57, No. 9, pp. 2310-2316, 2010):

and

where :, and : are new scale factors.

The position response of 2-D tetra-lateral PSD obtained by formulae proposed in S. Cui's paper The position response of 2-D Position Sensitive Device.jpg
The position response of 2-D tetra-lateral PSD obtained by formulae proposed in S. Cui's paper

The position estimation results obtained by this set of formulae are simulated below. We assume the light spot is moving in steps in both directions and we plot position estimates on a 2-D plane. Thus a regular grid pattern should be obtained if the estimated position is perfectly linear with the true position. The performance is much better than the previous formulae. Detailed simulations and experiment results can be found in S. Cui's paper.

Discrete Sensors

Serial Processing

The most common sensor applications with a sampling rate of less than 1000 Hz are CCD or CMOS cameras. The sensor is partitioned into individual pixels whose exposure value can be read out sequentially. The position of the light spot can be computed with the methods of photogrammetry directly from the brightness distribution.

Parallel Processing

Design of a discrete PSD from Massari with parallel processing. The yellow circle is the illuminated spot. Digital Position Sensitive Device.svg
Design of a discrete PSD from Massari with parallel processing. The yellow circle is the illuminated spot.

For faster applications, matrix sensors with parallel processing were developed. Both line by line and in columns, the density of light of each pixel is compared with a global threshold value. The results of comparison become lines and columns with logical OR links. From all columns and all lines the one element that is brighter than a given threshold value is the average value of the coordinates computed of the light spot.

Fabrication of isotropic sensors

Various semiconductor structures, including p-n junctions, Schottky barriers, and metal-oxide-semiconductor structures have been utilized in position-sensitive detectors. More recent hybrid structures based on PEDOT:PSS/n-Si heterojunction exhibit ultrahigh sensitivity and excellent linearity. [1] These hybrid configurations also benefit from a straightforward low-temperature fabrication process eliminating the high-temperature and costly process of manufacturing conventional p-n sensors. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

<span class="mw-page-title-main">Nonlinear optics</span> Branch of physics

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.

<span class="mw-page-title-main">Thermistor</span> Type of resistor whose resistance varies with temperature

A thermistor is a semiconductor type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word thermistor is a portmanteau of thermal and resistor.

The sensitivity of an electronic device, such as a communications system receiver, or detection device, such as a PIN diode, is the minimum magnitude of input signal required to produce a specified output signal having a specified signal-to-noise ratio, or other specified criteria. In general, it is the signal level required for a particular quality of received information.

<span class="mw-page-title-main">Frequency mixer</span> Circuit that creates new frequencies from two signals

In electronics, a mixer, or frequency mixer, is an electrical circuit that creates new frequencies from two signals applied to it. In its most common application, two signals are applied to a mixer, and it produces new signals at the sum and difference of the original frequencies. Other frequency components may also be produced in a practical frequency mixer.

<span class="mw-page-title-main">Photocathode</span>

A photocathode is a surface engineered to convert light (photons) into electrons using the photoelectric effect. Photocathodes are important in accelerator physics where they are utilised in a photoinjector to generate high brightness electron beams. Electron beams generated with photocathodes are commonly used for free electron lasers and for ultrafast electron diffraction. Photocathodes are also commonly used as the negatively charged electrode in a light detection device such as a photomultiplier, phototube and image intensifier.

<span class="mw-page-title-main">Calibration curve</span> Method for determining the concentration of a substance in an unknown sample

In analytical chemistry, a calibration curve, also known as a standard curve, is a general method for determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration. A calibration curve is one approach to the problem of instrument calibration; other standard approaches may mix the standard into the unknown, giving an internal standard. The calibration curve is a plot of how the instrumental response, the so-called analytical signal, changes with the concentration of the analyte.

In control engineering and system identification, a state-space representation is a mathematical model of a physical system specified as a set of input, output, and variables related by first-order differential equations or difference equations. Such variables, called state variables, evolve over time in a way that depends on the values they have at any given instant and on the externally imposed values of input variables. Output variables’ values depend on the state variable values and may also depend on the input variable values.

The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change for the Kerr effect is directly proportional to the square of the electric field instead of varying linearly with it. All materials show a Kerr effect, but certain liquids display it more strongly than others. The Kerr effect was discovered in 1875 by Scottish physicist John Kerr.

<span class="mw-page-title-main">Chiral model</span> Model of mesons in the massless quark limit

In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).

Particle filters, or sequential Monte Carlo methods, are a set of Monte Carlo algorithms used to find approximate solutions for filtering problems for nonlinear state-space systems, such as signal processing and Bayesian statistical inference. The filtering problem consists of estimating the internal states in dynamical systems when partial observations are made and random perturbations are present in the sensors as well as in the dynamical system. The objective is to compute the posterior distributions of the states of a Markov process, given the noisy and partial observations. The term "particle filters" was first coined in 1996 by Pierre Del Moral about mean-field interacting particle methods used in fluid mechanics since the beginning of the 1960s. The term "Sequential Monte Carlo" was coined by Jun S. Liu and Rong Chen in 1998.

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

Optical resolution describes the ability of an imaging system to resolve detail, in the object that is being imaged. An imaging system may have many individual components, including one or more lenses, and/or recording and display components. Each of these contributes to the optical resolution of the system; the environment in which the imaging is done often is a further important factor.

The Adomian decomposition method (ADM) is a semi-analytical method for solving ordinary and partial nonlinear differential equations. The method was developed from the 1970s to the 1990s by George Adomian, chair of the Center for Applied Mathematics at the University of Georgia. It is further extensible to stochastic systems by using the Ito integral. The aim of this method is towards a unified theory for the solution of partial differential equations (PDE); an aim which has been superseded by the more general theory of the homotopy analysis method. The crucial aspect of the method is employment of the "Adomian polynomials" which allow for solution convergence of the nonlinear portion of the equation, without simply linearizing the system. These polynomials mathematically generalize to a Maclaurin series about an arbitrary external parameter; which gives the solution method more flexibility than direct Taylor series expansion.

Harmonic balance is a method used to calculate the steady-state response of nonlinear differential equations, and is mostly applied to nonlinear electrical circuits. It is a frequency domain method for calculating the steady state, as opposed to the various time-domain steady-state methods. The name "harmonic balance" is descriptive of the method, which starts with Kirchhoff's Current Law written in the frequency domain and a chosen number of harmonics. A sinusoidal signal applied to a nonlinear component in a system will generate harmonics of the fundamental frequency. Effectively the method assumes a linear combination of sinusoids can represent the solution, then balances current and voltage sinusoids to satisfy Kirchhoff's law. The method is commonly used to simulate circuits which include nonlinear elements, and is most applicable to systems with feedback in which limit cycles occur.

Linear dynamical systems are dynamical systems whose evolution functions are linear. While dynamical systems, in general, do not have closed-form solutions, linear dynamical systems can be solved exactly, and they have a rich set of mathematical properties. Linear systems can also be used to understand the qualitative behavior of general dynamical systems, by calculating the equilibrium points of the system and approximating it as a linear system around each such point.

<span class="mw-page-title-main">Navier–Stokes existence and smoothness</span> Millennium Prize Problem

The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.

<span class="mw-page-title-main">Nonlinear acoustics</span>

Nonlinear acoustics (NLA) is a branch of physics and acoustics dealing with sound waves of sufficiently large amplitudes. Large amplitudes require using full systems of governing equations of fluid dynamics and elasticity. These equations are generally nonlinear, and their traditional linearization is no longer possible. The solutions of these equations show that, due to the effects of nonlinearity, sound waves are being distorted as they travel.

In image processing and computer vision, anisotropic diffusion, also called Perona–Malik diffusion, is a technique aiming at reducing image noise without removing significant parts of the image content, typically edges, lines or other details that are important for the interpretation of the image. Anisotropic diffusion resembles the process that creates a scale space, where an image generates a parameterized family of successively more and more blurred images based on a diffusion process. Each of the resulting images in this family are given as a convolution between the image and a 2D isotropic Gaussian filter, where the width of the filter increases with the parameter. This diffusion process is a linear and space-invariant transformation of the original image. Anisotropic diffusion is a generalization of this diffusion process: it produces a family of parameterized images, but each resulting image is a combination between the original image and a filter that depends on the local content of the original image. As a consequence, anisotropic diffusion is a non-linear and space-variant transformation of the original image.

<span class="mw-page-title-main">Hemispherical electron energy analyzer</span>

A hemispherical electron energy analyzer or hemispherical deflection analyzer is a type of electron energy spectrometer generally used for applications where high energy resolution is needed—different varieties of electron spectroscopy such as angle-resolved photoemission spectroscopy (ARPES), X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) or in imaging applications such as photoemission electron microscopy (PEEM) and low-energy electron microscopy (LEEM).

References

  1. 1 2 Javadi, Mohammad; Gholami, Mahdiyeh; Torbatiyan, Hadis; Abdi, Yaser (2018-03-12). "Hybrid organic/inorganic position-sensitive detectors based on PEDOT:PSS/n-Si". Applied Physics Letters. 112 (11): 113302. Bibcode:2018ApPhL.112k3302J. doi:10.1063/1.5022758. ISSN   0003-6951.