In mathematics, and specifically in operator theory, a positive-definite function on a group relates the notions of positivity, in the context of Hilbert spaces, and algebraic groups. It can be viewed as a particular type of positive-definite kernel where the underlying set has the additional group structure.
Let be a group, be a complex Hilbert space, and be the bounded operators on . A positive-definite function on is a function that satisfies
for every function with finite support ( takes non-zero values for only finitely many ).
In other words, a function is said to be a positive-definite function if the kernel defined by is a positive-definite kernel. Such a kernel is -symmetric, that is, it invariant under left -action: When is a locally compact group, the definition generalizes by integration over its left-invariant Haar measure . A positive-definite function on is a continuous function that satisfiesfor every continuous function with compact support.
The constant function , where is the identity operator on , is positive-definite.
Let be a finite abelian group and be the one-dimensional Hilbert space . Any character is positive-definite. (This is a special case of unitary representation.)
To show this, recall that a character of a finite group is a homomorphism from to the multiplicative group of norm-1 complex numbers. Then, for any function , When with the Lebesgue measure, and , a positive-definite function on is a continuous function such thatfor every continuous function with compact support.
A unitary representation is a unital homomorphism where is a unitary operator for all . For such , .
Positive-definite functions on are intimately related to unitary representations of . Every unitary representation of gives rise to a family of positive-definite functions. Conversely, given a positive-definite function, one can define a unitary representation of in a natural way.
Let be a unitary representation of . If is the projection onto a closed subspace of . Then is a positive-definite function on with values in . This can be shown readily:
for every with finite support. If has a topology and is weakly(resp. strongly) continuous, then clearly so is .
On the other hand, consider now a positive-definite function on . A unitary representation of can be obtained as follows. Let be the family of functions with finite support. The corresponding positive kernel defines a (possibly degenerate) inner product on . Let the resulting Hilbert space be denoted by .
We notice that the "matrix elements" for all in . So preserves the inner product on , i.e. it is unitary in . It is clear that the map is a representation of on .
The unitary representation is unique, up to Hilbert space isomorphism, provided the following minimality condition holds:
where denotes the closure of the linear span.
Identify as elements (possibly equivalence classes) in , whose support consists of the identity element , and let be the projection onto this subspace. Then we have for all .
Let be the additive group of integers . The kernel is called a kernel of Toeplitz type, by analogy with Toeplitz matrices. If is of the form where is a bounded operator acting on some Hilbert space. One can show that the kernel is positive if and only if is a contraction. By the discussion from the previous section, we have a unitary representation of , for a unitary operator . Moreover, the property now translates to . This is precisely Sz.-Nagy's dilation theorem and hints at an important dilation-theoretic characterization of positivity that leads to a parametrization of arbitrary positive-definite kernels.
Bra–ket notation, also called Dirac notation, is a notation for linear algebra and linear operators on complex vector spaces together with their dual space both in the finite-dimensional and infinite-dimensional case. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics. Its use in quantum mechanics is quite widespread.
The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.
The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space H. It is named after V. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung".
In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used in the reproducing kernel Hilbert space theory where it characterizes a symmetric positive-definite kernel as a reproducing kernel.
In mathematics, a positive-definite function is, depending on the context, either of two types of function.
In functional analysis, a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Specifically, a Hilbert space of functions from a set is an RKHS if, for each , there exists a function such that for all ,
In mathematics, particularly in operator theory and C*-algebra theory, the continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra.
The representation theory of groups is a part of mathematics which examines how groups act on given structures.
In linear algebra, the Gram matrix of a set of vectors in an inner product space is the Hermitian matrix of inner products, whose entries are given by the inner product . If the vectors are the columns of matrix then the Gram matrix is in the general case that the vector coordinates are complex numbers, which simplifies to for the case that the vector coordinates are real numbers.
In mathematics, particularly in functional analysis, a projection-valued measure is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-valued measure (PVM) is formally similar to a real-valued measure, except that its values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.
In mathematics, Bochner's theorem characterizes the Fourier transform of a positive finite Borel measure on the real line. More generally in harmonic analysis, Bochner's theorem asserts that under Fourier transform a continuous positive-definite function on a locally compact abelian group corresponds to a finite positive measure on the Pontryagin dual group. The case of sequences was first established by Gustav Herglotz
Wigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT transformations are represented on the Hilbert space of states.
In mathematics, Stinespring's dilation theorem, also called Stinespring's factorization theorem, named after W. Forrest Stinespring, is a result from operator theory that represents any completely positive map on a C*-algebra A as a composition of two completely positive maps each of which has a special form:
In operator theory, Naimark's dilation theorem is a result that characterizes positive operator valued measures. It can be viewed as a consequence of Stinespring's dilation theorem.
In operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues and generalizations have arisen in diverse parts of mathematics. They occur naturally in Fourier analysis, probability theory, operator theory, complex function-theory, moment problems, integral equations, boundary-value problems for partial differential equations, machine learning, embedding problem, information theory, and other areas.
Hilbert C*-modules are mathematical objects that generalise the notion of Hilbert spaces (which are themselves generalisations of Euclidean space), in that they endow a linear space with an "inner product" that takes values in a C*-algebra.
In the context of quantum mechanics and quantum information theory, symmetric, informationally complete, positive operator-valued measures (SIC-POVMs) are a particular type of generalized measurement (POVM). SIC-POVMs are particularly notable thanks to their defining features of (1) being informationally complete; (2)having the minimal number of outcomes compatible with informational completeness, and (3) being highly symmetric. In this context, informational completeness is the property of a POVM of allowing to fully reconstruct input states from measurement data.
In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.
Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.
For computer science, in statistical learning theory, a representer theorem is any of several related results stating that a minimizer of a regularized empirical risk functional defined over a reproducing kernel Hilbert space can be represented as a finite linear combination of kernel products evaluated on the input points in the training set data.