Positive form

Last updated

In complex geometry, the term positive form refers to several classes of real differential forms of Hodge type (p, p).

Contents

(1,1)-forms

Real (p,p)-forms on a complex manifold M are forms which are of type (p,p) and real, that is, lie in the intersection A real (1,1)-form is called semi-positive [1] (sometimes just positive [2] ), respectively, positive [3] (or positive definite [4] ) if any of the following equivalent conditions holds:

  1. is the imaginary part of a positive semidefinite (respectively, positive definite) Hermitian form.
  2. For some basis in the space of (1,0)-forms, can be written diagonally, as with real and non-negative (respectively, positive).
  3. For any (1,0)-tangent vector , (respectively, ).
  4. For any real tangent vector , (respectively, ), where is the complex structure operator.

Positive line bundles

In algebraic geometry, positive definite (1,1)-forms arise as curvature forms of ample line bundles (also known as positive line bundles). Let L be a holomorphic Hermitian line bundle on a complex manifold,

its complex structure operator. Then L is equipped with a unique connection preserving the Hermitian structure and satisfying

.

This connection is called the Chern connection .

The curvature of the Chern connection is always a purely imaginary (1,1)-form. A line bundle L is called positive if is a positive (1,1)-form. (Note that the de Rham cohomology class of is times the first Chern class of L.) The Kodaira embedding theorem claims that a positive line bundle is ample, and conversely, any ample line bundle admits a Hermitian metric with positive.

Positivity for (p, p)-forms

Semi-positive (1,1)-forms on M form a convex cone. When M is a compact complex surface, , this cone is self-dual, with respect to the Poincaré pairing :

For (p, p)-forms, where , there are two different notions of positivity. [5] A form is called strongly positive if it is a linear combination of products of semi-positive forms, with positive real coefficients. A real (p, p)-form on an n-dimensional complex manifold M is called weakly positive if for all strongly positive (n-p, n-p)-forms ζ with compact support, we have .

Weakly positive and strongly positive forms form convex cones. On compact manifolds these cones are dual with respect to the Poincaré pairing.

Notes

  1. Huybrechts (2005)
  2. Demailly (1994)
  3. Huybrechts (2005)
  4. Demailly (1994)
  5. Demailly (1994)

Related Research Articles

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.

In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.

<span class="mw-page-title-main">Hopf fibration</span> Fiber bundle of the 3-sphere over the 2-sphere, with 1-spheres as fibers

In the mathematical field of differential topology, the Hopf fibration describes a 3-sphere in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it is an influential early example of a fiber bundle. Technically, Hopf found a many-to-one continuous function from the 3-sphere onto the 2-sphere such that each distinct point of the 2-sphere is mapped from a distinct great circle of the 3-sphere. Thus the 3-sphere is composed of fibers, where each fiber is a circle — one for each point of the 2-sphere.

In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms.

In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below.

In general relativity, the metric tensor is the fundamental object of study. It may loosely be thought of as a generalization of the gravitational potential of Newtonian gravitation. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

In mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure.

In algebraic geometry, a line bundle on a projective variety is nef if it has nonnegative degree on every curve in the variety. The classes of nef line bundles are described by a convex cone, and the possible contractions of the variety correspond to certain faces of the nef cone. In view of the correspondence between line bundles and divisors, there is an equivalent notion of a nef divisor.

In mathematics, more particularly in complex geometry, algebraic geometry and complex analysis, a positive current is a positive (n-p,n-p)-form over an n-dimensional complex manifold, taking values in distributions.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.

In the mathematical field of differential geometry, the Paneitz operator is a fourth-order differential operator defined on a Riemannian manifold of dimension n. It is named after Stephen Paneitz, who discovered it in 1983, and whose preprint was later published posthumously in Paneitz 2008. In fact, the same operator was found earlier in the context of conformal supergravity by E. Fradkin and A. Tseytlin in 1982 (Phys Lett B 110 117 and Nucl Phys B 1982 157 ). It is given by the formula

<span class="mw-page-title-main">Weyl equation</span> Relativistic wave equation describing massless fermions

In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.

In mathematics, and in particular gauge theory and complex geometry, a Hermitian Yang–Mills connection is a Chern connection associated to an inner product on a holomorphic vector bundle over a Kähler manifold that satisfies an analogue of Einstein's equations: namely, the contraction of the curvature 2-form of the connection with the Kähler form is required to be a constant times the identity transformation. Hermitian Yang–Mills connections are special examples of Yang–Mills connections, and are often called instantons.

In mathematics, and especially differential geometry, the Quillen metric is a metric on the determinant line bundle of a family of operators. It was introduced by Daniel Quillen for certain elliptic operators over a Riemann surface, and generalized to higher-dimensional manifolds by Jean-Michel Bismut and Dan Freed.

In mathematics and theoretical physics, and especially gauge theory, the deformed Hermitian Yang–Mills (dHYM) equation is a differential equation describing the equations of motion for a D-brane in the B-model of string theory. The equation was derived by Mariño-Minasian-Moore-Strominger in the case of Abelian gauge group, and by Leung–Yau–Zaslow using mirror symmetry from the corresponding equations of motion for D-branes in the A-model of string theory.

In mathematics, and especially symplectic geometry, the Thomas–Yau conjecture asks for the existence of a stability condition, similar to those which appear in algebraic geometry, which guarantees the existence of a solution to the special Lagrangian equation inside a Hamiltonian isotopy class of Lagrangian submanifolds. In particular the conjecture contains two difficulties: first it asks what a suitable stability condition might be, and secondly if one can prove stability of an isotopy class if and only if it contains a special Lagrangian representative.

In complex geometry, the Kähler identities are a collection of identities between operators on a Kähler manifold relating the Dolbeault operators and their adjoints, contraction and wedge operators of the Kähler form, and the Laplacians of the Kähler metric. The Kähler identities combine with results of Hodge theory to produce a number of relations on de Rham and Dolbeault cohomology of compact Kähler manifolds, such as the Lefschetz hyperplane theorem, the hard Lefschetz theorem, the Hodge-Riemann bilinear relations, and the Hodge index theorem. They are also, again combined with Hodge theory, important in proving fundamental analytical results on Kähler manifolds, such as the -lemma, the Nakano inequalities, and the Kodaira vanishing theorem.

References