Precursor (physics)

Last updated

Precursors are characteristic wave patterns caused by dispersion of an impulse's frequency components as it propagates through a medium. Classically, precursors precede the main signal, although in certain situations they may also follow it. Precursor phenomena exist for all types of waves, as their appearance is only predicated on the prominence of dispersion effects in a given mode of wave propagation. This non-specificity has been confirmed by the observation of precursor patterns in different types of electromagnetic radiation (microwaves, [1] visible light, [2] and terahertz radiation [3] ) as well as in fluid surface waves [4] and seismic waves. [5]

Contents

History

Precursors were first theoretically predicted in 1914 by Arnold Sommerfeld for the case of electromagnetic radiation propagating through a neutral dielectric in a region of normal dispersion. [6] Sommerfeld's work was expanded in the following years by Léon Brillouin, who applied the saddle point approximation to compute the integrals involved. [6] However, it was not until 1969 that precursors were first experimentally confirmed for the case of microwaves propagating in a waveguide, [1] and much of the experimental work observing precursors in other types of waves has only been done since the year 2000. This experimental lag is mainly due to the fact that in many situations, precursors have a much smaller amplitude than the signals that give rise to them (a baseline figure given by Brillouin is six orders of magnitude smaller). [6] As a result, experimental confirmations could only be done after technology became available to detect precursors.

Basic theory

As a dispersive phenomenon, the amplitude at any distance and time of a precursor wave propagating in one dimension can be expressed by the Fourier integral

where is the Fourier transform of the initial impulse and the complex exponential represents the individual component wavelets summed in the integral. To account for the effects of dispersion, the phase of the exponential must include the dispersion relation (here, the factor) for the particular medium in which the wave is propagating.

The integral above can only be solved in closed form when idealized assumptions are made about the initial impulse and the dispersion relation, as in Sommerfeld's derivation below. In most realistic cases, numerical integration is required to compute the integral.

Sommerfeld's derivation for electromagnetic waves in a neutral dielectric

Assuming the initial impulse takes the form of a sinusoid turned on abruptly at time ,

then we can write the general-form integral given in the previous section as

For simplicity, we assume the frequencies involved are all in a range of normal dispersion for the medium, and we let the dispersion relation take the form

where , being the number of atomic oscillators in the medium, and the charge and mass of each one, the natural frequency of the oscillators, and the vacuum permittivity. This yields the integral

To solve this integral, we first express the time in terms of the retarded time , which is necessary to ensure that the solution does not violate causality by propagating faster than . We also treat as large and ignore the term in deference to the second-order term. Lastly, we substitute , getting

Rewriting this as

and making the substitutions

allows the integral to be transformed into

where is simply a dummy variable, and, finally

where is a Bessel function of the first kind. This solution, which is an oscillatory function with amplitude and period that both increase with increasing time, is characteristic of a particular type of precursor known as the Sommerfeld precursor. [7]

Stationary-Phase-Approximation-Based Period Analysis

The stationary phase approximation can be used to analyze the form of precursor waves without solving the general-form integral given in the Basic Theory section above. The stationary phase approximation states that for any speed of wave propagation determined from any distance and time , the dominant frequency of the precursor is the frequency whose group velocity equals :

Therefore, one can determine the approximate period of a precursor waveform at a particular distance and time by calculating the period of the frequency component that would arrive at that distance and time based on its group velocity. In a region of normal dispersion, high-frequency components have a faster group velocity than low-frequency ones, so the front of the precursor should have a period corresponding to that of the highest-frequency component of the original impulse; with increasing time, components with lower and lower frequencies arrive, so the period of the precursor becomes longer and longer until the lowest-frequency component arrives. As more and more components arrive, the amplitude of the precursor also increases. The particular type of precursor characterized by increasing period and amplitude is known as the high-frequency Sommerfeld precursor.

In a region of anomalous dispersion, where low-frequency components have faster group velocities than high-frequency ones, the opposite of the above situation occurs: the onset of the precursor is characterized by a long period, and the period of the signal decreases with time. This type of precursor is called a low-frequency Sommerfeld precursor.

In certain situations of wave propagation (for instance, fluid surface waves), two or more frequency components may have the same group velocity for particular ranges of frequency; this is typically accompanied by a local extremum in the group velocity curve. This means that for certain values of time and distance, the precursor waveform will consist of a superposition of both low- and high-frequency Sommerfeld precursors. Any local extrema only correspond to single frequencies, so at these points there will be a contribution from a precursor signal with a constant period; this is known as a Brillouin precursor.

Related Research Articles

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.

<span class="mw-page-title-main">Drude model</span> Model of electrical conduction

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

<span class="mw-page-title-main">Dispersion relation</span> Relation of wavelength/wavenumber as a function of a waves frequency

In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency-dependence of wave propagation and attenuation.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

<span class="mw-page-title-main">Dirac comb</span> Periodic distribution ("function") of "point-mass" Dirac delta sampling

In mathematics, a Dirac comb is a periodic function with the formula

<span class="mw-page-title-main">Linear time-invariant system</span> Mathematical model which is both linear and time-invariant

In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (xh)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.

<span class="mw-page-title-main">Love wave</span> Horizontally polarized surface waves

In elastodynamics, Love waves, named after Augustus Edward Hough Love, are horizontally polarized surface waves. The Love wave is a result of the interference of many shear waves (S-waves) guided by an elastic layer, which is welded to an elastic half space on one side while bordering a vacuum on the other side. In seismology, Love waves (also known as Q waves (Quer: German for lateral)) are surface seismic waves that cause horizontal shifting of the Earth during an earthquake. Augustus Edward Hough Love predicted the existence of Love waves mathematically in 1911. They form a distinct class, different from other types of seismic waves, such as P-waves and S-waves (both body waves), or Rayleigh waves (another type of surface wave). Love waves travel with a lower velocity than P- or S- waves, but faster than Rayleigh waves. These waves are observed only when there is a low velocity layer overlying a high velocity layer/ sub–layers.

Self-phase modulation (SPM) is a nonlinear optical effect of light–matter interaction. An ultrashort pulse of light, when travelling in a medium, will induce a varying refractive index of the medium due to the optical Kerr effect. This variation in refractive index will produce a phase shift in the pulse, leading to a change of the pulse's frequency spectrum.

In theory of vibrations, Duhamel's integral is a way of calculating the response of linear systems and structures to arbitrary time-varying external perturbation.

In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In optics, the term soliton is used to refer to any optical field that does not change during propagation because of a delicate balance between nonlinear and dispersive effects in the medium. There are two main kinds of solitons:

Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

<span class="mw-page-title-main">Peregrine soliton</span> Analytic solution of the nonlinear Schrödinger equation

The Peregrine soliton is an analytic solution of the nonlinear Schrödinger equation. This solution was proposed in 1983 by Howell Peregrine, researcher at the mathematics department of the University of Bristol.

In thermal quantum field theory, the Matsubara frequency summation is the summation over discrete imaginary frequencies. It takes the following form

In physics and mathematics, the spacetime triangle diagram (STTD) technique, also known as the Smirnov method of incomplete separation of variables, is the direct space-time domain method for electromagnetic and scalar wave motion.

<span class="mw-page-title-main">Critical embankment velocity</span>

Critical embankment velocity or critical speed, in transportation engineering, is the velocity value of the upper moving vehicle that causes the severe vibration of the embankment and the nearby ground. This concept and the prediction method was put forward by scholars in civil engineering communities before 1980 and stressed and exhaustively studied by Krylov in 1994 based on the Green function method and predicted more accurately using other methods in the following. When the vehicles such as high-speed trains or airplanes move approaching or beyond this critical velocity, the vibration magnitudes of vehicles and nearby ground increase rapidly and possibly lead to the damage to the passengers and the neighboring residents. This relevant unexpected phenomenon is called the ground vibration boom from 1997 when it was observed in Sweden for the first time.

References

  1. 1 2 Pleshko, Peter; Palócz, István (1969-06-02). "Experimental Observation of Sommerfeld and Brillouin Precursors in the Microwave Domain". Physical Review Letters. American Physical Society (APS). 22 (22): 1201–1204. doi:10.1103/physrevlett.22.1201. ISSN   0031-9007.
  2. Aaviksoo, J.; Kuhl, J.; Ploog, K. (1991-11-01). "Observation of optical precursors at pulse propagation in GaAs". Physical Review A. American Physical Society (APS). 44 (9): R5353–R5356. doi:10.1103/physreva.44.r5353. ISSN   1050-2947.
  3. Ni, Xiaohui; Alfano, R. R. (2006). "Brillouin precursor propagation in the THz region in Lorentz media". Optics Express. The Optical Society. 14 (9): 4188–4194. doi: 10.1364/oe.14.004188 . ISSN   1094-4087.
  4. Falcon, Éric; Laroche, Claude; Fauve, Stéphan (2003-08-07). "Observation of Sommerfeld Precursors on a Fluid Surface". Physical Review Letters. American Physical Society (APS). 91 (6): 064502. arXiv: physics/0307032 . doi:10.1103/physrevlett.91.064502. ISSN   0031-9007.
  5. Rost, Sebastian; Garnero, Edward J.; Williams, Quentin; Manga, Michael (2005). "Seismological constraints on a possible plume root at the core–mantle boundary". Nature. Springer Science and Business Media LLC. 435 (7042): 666–669. doi:10.1038/nature03620. ISSN   0028-0836.
  6. 1 2 3 See L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York, NY, 1960), Ch. 1.
  7. See A. Sommerfeld, Lectures on Theoretical Physics (Academic Press, New York, NY, 1950), Vol. 4, p. 88-101, for further details of this derivation.