Privacy-preserving computational geometry

Last updated

Privacy-preserving computational geometry is the research area on the intersection of the domains of secure multi-party computation (SMC) and computational geometry. Classical problems of computational geometry reconsidered from the point of view of SMC include shape intersection, private point inclusion problem, range searching, convex hull, [1] and more. [2]

A pioneering work in this area was a 2001 paper by Atallah and Du, [3] in which the secure point in polygon inclusion and polygonal intersection problems were considered.

Other problems are computation of the distance between two private points [4] and secure two-party point-circle inclusion problem. [5]

Problem statements

The problems use the conventional "Alice and Bob" terminology. In all problems the required solution is a protocol of information exchange during which no additional information is revealed beyond what may be inferred from the answer to the required question.

Related Research Articles

Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity.

Point in polygon

In computational geometry, the point-in-polygon (PIP) problem asks whether a given point in the plane lies inside, outside, or on the boundary of a polygon. It is a special case of point location problems and finds applications in areas that deal with processing geometrical data, such as computer graphics, computer vision, geographical information systems (GIS), motion planning, and CAD.

Secure multi-party computation is a subfield of cryptography with the goal of creating methods for parties to jointly compute a function over their inputs while keeping those inputs private. Unlike traditional cryptographic tasks, where cryptography assures security and integrity of communication or storage and the adversary is outside the system of participants, the cryptography in this model protects participants' privacy from each other.

A cryptosystem is considered to have information-theoretic security if the system is secure against adversaries with unlimited computing resources and time. In contrast, a system which depends on the computational cost of cryptanalysis to be secure is called computationally, or conditionally, secure.

Simple polygon Flat shape consisting of straight, non-intersecting lines

In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a flat shape consisting of straight, non-intersecting line segments or "sides" that are joined pairwise to form a single closed path. If the sides intersect then the polygon is not simple. The qualifier "simple" is frequently omitted, with the above definition then being understood to define a polygon in general.

Circle graph

In graph theory, a circle graph is the intersection graph of a chord diagram. That is, it is an undirected graph whose vertices can be associated with a finite system of chords of a circle such that two vertices are adjacent if and only if the corresponding chords cross each other.

Bitangent

In mathematics, a bitangent to a curve C is a line L that touches C in two distinct points P and Q and that has the same direction as C at these points. That is, L is a tangent line at P and at Q.

In computational geometry, the multiple line segment intersection problem supplies a list of line segments in the Euclidean plane and asks whether any two of them intersect (cross).

Planarity is a puzzle computer game by John Tantalo, based on a concept by Mary Radcliffe at Western Michigan University. The name comes from the concept of planar graphs in graph theory; these are graphs that can be embedded in the Euclidean plane so that no edges intersect. By Fáry's theorem, if a graph is planar, it can be drawn without crossings so that all of its edges are straight line segments. In the planarity game, the player is presented with a circular layout of a planar graph, with all the vertices placed on a single circle and with many crossings. The goal for the player is to eliminate all of the crossings and construct a straight-line embedding of the graph by moving the vertices one by one into better positions.

In cryptography, the socialist millionaire problem is one in which two millionaires want to determine if their wealth is equal without disclosing any information about their riches to each other. It is a variant of the Millionaire's Problem whereby two millionaires wish to compare their riches to determine who has the most wealth without disclosing any information about their riches to each other.

In computational geometry and computer science, the minimum-weight triangulation problem is the problem of finding a triangulation of minimal total edge length. That is, an input polygon or the convex hull of an input point set must be subdivided into triangles that meet edge-to-edge and vertex-to-vertex, in such a way as to minimize the sum of the perimeters of the triangles. The problem is NP-hard for point set inputs, but may be approximated to any desired degree of accuracy. For polygon inputs, it may be solved exactly in polynomial time. The minimum weight triangulation has also sometimes been called the optimal triangulation.

In computational complexity theory, there is an open problem of whether some information about a sum of radicals may be computed in polynomial time depending on the input size, i.e., in the number of bits necessary to represent this sum. It is of importance for many problems in computational geometry, since the computation of the Euclidean distance between two points in the general case involves the computation of a square root, and therefore the perimeter of a polygon or the length of a polygonal chain takes the form of a sum of radicals.

Yao's Millionaires' problem is a secure multi-party computation problem introduced in 1982 by computer scientist and computational theorist Andrew Yao. The problem discusses two millionaires, Alice and Bob, who are interested in knowing which of them is richer without revealing their actual wealth.

Polygon-circle graph

In the mathematical discipline of graph theory, a polygon-circle graph is an intersection graph of a set of convex polygons all of whose vertices lie on a common circle. These graphs have also been called spider graphs. This class of graphs was first suggested by Michael Fellows in 1988, motivated by the fact that it is closed under edge contraction and induced subgraph operations.

In mathematical logic, computational complexity theory, and computer science, the existential theory of the reals is the set of all true sentences of the form

In the study of algorithms, an LP-type problem is an optimization problem that shares certain properties with low-dimensional linear programs and that may be solved by similar algorithms. LP-type problems include many important optimization problems that are not themselves linear programs, such as the problem of finding the smallest circle containing a given set of planar points. They may be solved by a combination of randomized algorithms in an amount of time that is linear in the number of elements defining the problem, and subexponential in the dimension of the problem.

A covering of a polygon is a set of primitive units whose union equals the polygon. A polygon covering problem is a problem of finding a covering with a smallest number of units for a given polygon. This is an important class of problems in computational geometry. There are many different polygon covering problems, depending on the type of polygon being covering. An example polygon covering problem is: given a rectilinear polygon, find a smallest set of squares whose union equals the polygon.

Garbled circuit is a cryptographic protocol that enables two-party secure computation in which two mistrusting parties can jointly evaluate a function over their private inputs without the presence of a trusted third party. In the garbled circuit protocol, the function has to be described as a Boolean circuit.

Geometric Folding Algorithms: Linkages, Origami, Polyhedra is a monograph on the mathematics and computational geometry of mechanical linkages, paper folding, and polyhedral nets, by Erik Demaine and Joseph O'Rourke. It was published in 2007 by Cambridge University Press (ISBN 978-0-521-85757-4). A Japanese-language translation by Ryuhei Uehara was published in 2009 by the Modern Science Company (ISBN 978-4-7649-0377-7).

References

  1. "Archived copy" (PDF). Archived from the original (PDF) on 2013-11-12. Retrieved 2013-11-12.{{cite web}}: CS1 maint: archived copy as title (link)
  2. Kaitai LIANG, Bo YANG, Dake HE, Min ZHOU, Privacy-Preserving Computational Geometry Problems on Conic Sections, Journal of Computational Information Systems 7: 6 (2011) 1910–1923
  3. 1 2 3 Atallah M J, Du W. Secure Multiparty Computational Geometry. In Proc. Algorithms and Data Structures: 7th International Workshop, WADS 2001, Lecture Notes in Computer Science, LNCS 2125, Providence, RI, USA, pages 165–179, August 8–10, 2001. (As cited by Liang et al. 2011)
  4. Li S D, Dai Y Q. Secure two-party computational geometry. Journal of Computer Science and Technology, 20(2): pages 258–263, 2005.
  5. Luo Y L, Huang L S, Zhong H. Secure two-party point-circle inclusion problem. Journal of Computer Science and Technology, 22(1): pages 88–91, 2007