Process analytical technology

Last updated

Process analytical technology (PAT) has been defined by the United States Food and Drug Administration (FDA) as a mechanism to design, analyze, and control pharmaceutical manufacturing processes through the measurement of critical process parameters (CPP) which affect the critical quality attributes (CQA).

Contents

The concept actually aims at understanding the processes by defining their CPPs, and accordingly monitoring them in a timely manner (preferably in-line or on-line) and thus being more efficient in testing while at the same time reducing over-processing, enhancing consistency and minimizing rejects.

The FDA has outlined a regulatory framework [1] for PAT implementation. With this framework – according to Hinz [2] – the FDA tries to motivate the pharmaceutical industry to improve the production process. Because of the tight regulatory requirements and the long development time for a new drug, the production technology is "frozen" at the time of conducting phase-2 clinical trials.

Generally, the PAT initiative from FDA is only one topic within the broader initiative of "Pharmaceutical cGMPs for the 21st century – A risk based approach". [3]

The basics

PAT is a term used for describing a broader change in pharmaceutical manufacturing from static batch manufacturing to a more dynamic approach. It involves defining the Critical Process Parameters (CPPs) of the equipment used to make the product, which affect the Critical Quality Attributes (CQAs) of the product and then controlling these CPPs within defined limits. This allows manufacturers to produce products with consistent quality and also helps to reduce waste & overall costs.

This mechanism for producing consistent product quality & reducing waste presents a good case for utilising continuous manufacturing technologies. The control of a steady state process when you understand the upstream & downstream effects is an easier task as common cause variability is easier to define and monitor.

The variables

It would be acceptable to consider that raw materials used to manufacture pharmaceutical products can vary in their attributes e.g. moisture content, crystal structure etc. It would also be acceptable to consider that manufacturing equipment does not always operate in exactly the same fashion due to the inherent tolerance of the equipment and its components. It is therefore logical to say that variability in raw materials married with a static batch process with inherent variability in process equipment produces variable product. This is on the basis that a static batch process produces product by following a fixed recipe with fixed set-points.

With this in mind the PAT drive is to have a dynamic manufacturing process that compensates for variability both in raw materials & equipment to produce a consistent product.

PAT implementation

The challenge to date with PAT for pharmaceutical manufacturers is knowing how to start. A common problem is picking a complex process and getting mired in the challenge of collecting and analyzing the data.

The following criteria serve as a basic framework for successful PAT roll-outs: (From A PAT Primer)

PAT tools

In order to implement a successful PAT project, a combination of three main PAT tools is essential:

Long-term goals

The long-term goals of PAT are to:

Currently NIR spectroscopy applications dominate the PAT projects. A possible next-generation solution is Energy Dispersive X-Ray Diffraction (EDXRD). [4] For a detailed review of PAT tools see Scott, [5] or Roggo. [6] For an example of application see Gendre. [7]

Although the FDA's PAT initiative encourages process control based on the real-time acquired data, a small part of PAT applications goes beyond monitoring the processes and follows the PACT (‘Process Analytically Controlled Technology’) approach. [8]

MVA in PAT

Fundamental to process analytical technology (PAT) initiatives are the basics of multivariate analysis (MVDA) and design of experiments (DoE). This is because analysis of the process data is a key to understand the process and keep it under multivariate statistical control.

Footnotes

  1. FDA, Guidance for industry: PAT – A framework for innovative pharmaceutical development, manufacturing and quality assurance; September 2004
  2. Hinz, Process analytical technologies in the pharmaceutical industry: the FDA's PAT initiative; Anal Bioanal Chem, Vol 384, p1036-1042, 2006
  3. FDA, Pharmaceutical cGMPs for the 21st century – A risk based approach; Final Report, September 2004
  4. Williams, J: Healthcare Distributor, December 2006/January 2007, page 81. Colorado, United States: E.L.F. Publications, Inc. OCLC   833048096
  5. Scott, B.; Wilcock, A. (2006). "Process analytical technology in the pharmaceutical industry: A toolkit for continuous improvement". PDA Journal of Pharmaceutical Science and Technology / PDA. 60 (1): 17–53. PMID   17089677.
  6. Roggo, Y.; Chalus, P.; Maurer, L.; Lemamartinez, C.; Edmond, A.; Jent, N. (2007). "A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies". Journal of Pharmaceutical and Biomedical Analysis. 44 (3): 683–700. doi:10.1016/j.jpba.2007.03.023. PMID   17482417.
  7. Gendre, C.; Genty, M.; Boiret, M.; Julien, M.; Meunier, L. C.; Lecoq, O.; Baron, M.; Chaminade, P.; Péan, J. M. (2011). "Development of a Process Analytical Technology (PAT) for in-line monitoring of film thickness and mass of coating materials during a pan coating operation" (PDF). European Journal of Pharmaceutical Sciences. 43 (4): 244–250. doi:10.1016/j.ejps.2011.04.017. PMID   21569842.
  8. Nagy, B; et al. (2017). "In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process". International Journal of Pharmaceutics. 530 (1–2): 21–29. doi:10.1016/j.ijpharm.2017.07.041. PMID   28723408.

Related Research Articles

Chemometrics is the science of extracting information from chemical systems by data-driven means. Chemometrics is inherently interdisciplinary, using methods frequently employed in core data-analytic disciplines such as multivariate statistics, applied mathematics, and computer science, in order to address problems in chemistry, biochemistry, medicine, biology and chemical engineering. In this way, it mirrors other interdisciplinary fields, such as psychometrics and econometrics.

Business performance management (BPM), also known as corporate performance management (CPM) and enterprise performance management (EPM),) is a set of performance management and analytic processes that enables the management of an organization's performance to achieve one or more pre-selected goals. Gartner retired the concept of "CPM" and reclassified it as "financial planning and analysis (FP&A)," and "financial close" to reflect two concepts: increased focus on planning and the emergence of a new category of solutions supporting the management of the financial close.

<span class="mw-page-title-main">Good manufacturing practice</span> Manufacturing quality standards

Current good manufacturing practices (cGMP) are those conforming to the guidelines recommended by relevant agencies. Those agencies control the authorization and licensing of the manufacture and sale of food and beverages, cosmetics, pharmaceutical products, dietary supplements, and medical devices. These guidelines provide minimum requirements that a manufacturer must meet to assure that their products are consistently high in quality, from batch to batch, for their intended use. The rules that govern each industry may differ significantly; however, the main purpose of GMP is always to prevent harm from occurring to the end user. Additional tenets include ensuring the end product is free from contamination, that it is consistent in its manufacture, that its manufacture has been well documented, that personnel are well trained, and that the product has been checked for quality more than just at the end phase. GMP is typically ensured through the effective use of a quality management system (QMS).

Design for Six Sigma (DFSS) is an Engineering design process, business process management method related to traditional Six Sigma. It is used in many industries, like finance, marketing, basic engineering, process industries, waste management, and electronics. It is based on the use of statistical tools like linear regression and enables empirical research similar to that performed in other fields, such as social science. While the tools and order used in Six Sigma require a process to be in place and functioning, DFSS has the objective of determining the needs of customers and the business, and driving those needs into the product solution so created. It is used for product or process design in contrast with process improvement. Measurement is the most important part of most Six Sigma or DFSS tools, but whereas in Six Sigma measurements are made from an existing process, DFSS focuses on gaining a deep insight into customer needs and using these to inform every design decision and trade-off.

<span class="mw-page-title-main">Chemical plant</span> Industrial process plant that manufactures chemicals

A chemical plant is an industrial process plant that manufactures chemicals, usually on a large scale. The general objective of a chemical plant is to create new material wealth via the chemical or biological transformation and or separation of materials. Chemical plants use specialized equipment, units, and technology in the manufacturing process. Other kinds of plants, such as polymer, pharmaceutical, food, and some beverage production facilities, power plants, oil refineries or other refineries, natural gas processing and biochemical plants, water and wastewater treatment, and pollution control equipment use many technologies that have similarities to chemical plant technology such as fluid systems and chemical reactor systems. Some would consider an oil refinery or a pharmaceutical or polymer manufacturer to be effectively a chemical plant.

Validation is the process of establishing documentary evidence demonstrating that a procedure, process, or activity carried out in testing and then production maintains the desired level of compliance at all stages. In the pharmaceutical industry, it is very important that in addition to final testing and compliance of products, it is also assured that the process will consistently produce the expected results. The desired results are established in terms of specifications for outcome of the process. Qualification of systems and equipment is therefore a part of the process of validation. Validation is a requirement of food, drug and pharmaceutical regulating agencies such as the US FDA and their good manufacturing practices guidelines. Since a wide variety of procedures, processes, and activities need to be validated, the field of validation is divided into a number of subsections including the following:

Cleaning validation is the methodology used to assure that a cleaning process removes chemical and microbial residues of the active, inactive or detergent ingredients of the product manufactured in a piece of equipment, the cleaning aids utilized in the cleaning process and the microbial attributes. All residues are removed to predetermined levels to ensure the quality of the next product manufactured is not compromised by residues from the previous product and the quality of future products using the equipment, to prevent cross-contamination and as a good manufacturing practice requirement.

In the pharmaceutical industry, drug dissolution testing is routinely used to provide critical in vitro drug release information for both quality control purposes, i.e., to assess batch-to-batch consistency of solid oral dosage forms such as tablets, and drug development, i.e., to predict in vivo drug release profiles. There are three typical situations where dissolution testing plays a vital role: (i) formulation and optimization decisions: during product development, for products where dissolution performance is a critical quality attribute, both the product formulation and the manufacturing process are optimized based on achieving specific dissolution targets. (ii) Equivalence decisions: during generic product development, and also when implementing post-approval process or formulation changes, similarity of in vitro dissolution profiles between the reference product and its generic or modified version are one of the key requirements for regulatory approval decisions. (iii) Product compliance and release decisions: during routine manufacturing, dissolution outcomes are very often one of the criteria used to make product release decisions.

Manufacturing execution systems (MES) are computerized systems used in manufacturing to track and document the transformation of raw materials to finished goods. MES provides information that helps manufacturing decision-makers understand how current conditions on the plant floor can be optimized to improve production output. MES works as real-time monitoring system to enable the control of multiple elements of the production process.

Quality by design (QbD) is a concept first outlined by quality expert Joseph M. Juran in publications, most notably Juran on Quality by Design. Designing for quality and innovation is one of the three universal processes of the Juran Trilogy, in which Juran describes what is required to achieve breakthroughs in new products, services, and processes. Juran believed that quality could be planned, and that most quality crises and problems relate to the way in which quality was planned.

The National Institute for Pharmaceutical Technology and Education (NIPTE) is a non-profit scientific and research and development organization that was established in 2005 and incorporated in June 2007 in the State of Indiana. Its offices are currently located in Minneapolis, Minnesota.

Water chemistry analyses are carried out to identify and quantify the chemical components and properties of water samples. The type and sensitivity of the analysis depends on the purpose of the analysis and the anticipated use of the water. Chemical water analysis is carried out on water used in industrial processes, on waste-water stream, on rivers and stream, on rainfall and on the sea. In all cases the results of the analysis provides information that can be used to make decisions or to provide re-assurance that conditions are as expected. The analytical parameters selected are chosen to be appropriate for the decision making process or to establish acceptable normality. Water chemistry analysis is often the groundwork of studies of water quality, pollution, hydrology and geothermal waters. Analytical methods routinely used can detect and measure all the natural elements and their inorganic compounds and a very wide range of organic chemical species using methods such as gas chromatography and mass spectrometry. In water treatment plants producing drinking water and in some industrial processes using products with distinctive taste and odours, specialised organoleptic methods may be used to detect smells at very low concentrations.

Ultrapure water (UPW), high-purity water or highly purified water (HPW) is water that has been purified to uncommonly stringent specifications. Ultrapure water is a term commonly used in manufacturing to emphasize the fact that the water is treated to the highest levels of purity for all contaminant types, including: organic and inorganic compounds; dissolved and particulate matter; volatile and non-volatile; reactive, and inert; hydrophilic and hydrophobic; and dissolved gases.

Alpha MOS is a company which designs and manufactures analytical instruments for chemical and sensory analysis, and more particularly odor, taste and visual analysis. The Company was created in 1993. It is headquartered in Toulouse, France and owns three subsidiaries in Hanover (USA), Tokyo (Japan) and Shanghai (China). Alpha MOS Electronic Nose, Electronic Tongue and Electronic Eye have various applications in Food and Beverage mainly, Packaging, Environment, Pharmaceutical Industry, Cosmetics, Chemicals and Petrochemicals.

<span class="mw-page-title-main">Mettler Toledo</span>

Mettler Toledo is a multinational manufacturer of scales and analytical instruments. It is the largest provider of weighing instruments for use in laboratory, industrial, and food retailing applications. The company also provides various analytical instruments, process analytics instruments, and end-of-line inspection systems. The company operates worldwide with 70% of net sales, derived in equal parts, from Europe and from the Americas. Asian business is included in the remaining 30%. Mettler Toledo is headquartered in Switzerland and incorporated in the United States.

Process validation is the analysis of data gathered throughout the design and manufacturing of a product in order to confirm that the process can reliably output products of a determined standard. Regulatory authorities like EMA and FDA have published guidelines relating to process validation. The purpose of process validation is to ensure varied inputs lead to consistent and high quality outputs. Process validation is an ongoing process that must be frequently adapted as manufacturing feedback is gathered. End-to-end validation of production processes is essential in determining product quality because quality cannot always be determined by finished-product inspection. Process validation can be broken down into 3 steps: process design, process qualification, and continued process verification.

Continued process verification (CPV) is the collection and analysis of end-to-end production components and processes data to ensure product outputs are within predetermined quality limits. In 2011 the Food and Drug Administration published a report outlining best practices regarding business process validation in the pharmaceutical industry. Continued process verification is outlined in this report as the third stage in Process Validation.

Critical process parameters (CPP) in pharmaceutical manufacturing are key variables affecting the production process. CPPs are attributes that are monitored to detect deviations in standardized production operations and product output quality or changes in critical quality attributes. Those attributes with a higher impact on CQAs should be prioritized and held in a stricter state of control. The manufacturer should conduct tests to set acceptable range limits of the determined CPPs and define acceptable process variable variability. Operational conditions within this range are considered acceptable operational standards. Any deviation from the acceptable range will be indicative of issues within the process and the subsequent production of substandard products. Data relating to CPP should be recorded, stored, and analyzed by the manufacturer. CPP variables and ranges should be reevaluated after careful analysis of historical CPP data. Identifying CPPs is done in stage one of process validation: process design are an essential part of a manufacturing control strategy.

Process performance qualification protocol is a component of process validation: process qualification. This step is vital in maintaining ongoing production quality by recording and having available for review essential conditions, controls, testing, and expected manufacturing outcome of a production process. The Food and Drug Administration recommends the following criteria be included in a PPQ protocol:

Microfluidic modulation spectroscopy (MMS) is an infrared spectroscopy technique that is used to characterize the secondary structure of proteins. Infrared (IR) spectroscopy is well known for this application.. However, the lack of automation, repeatability and dynamic range of detection in conventional platforms such as FTIR, have been major limitations which have been addressed with the development of microfluidic modulation spectroscopy.

References