Programming language specification

Last updated

In computer programming, a programming language specification (or standard or definition) is a documentation artifact that defines a programming language so that users and implementors can agree on what programs in that language mean. Specifications are typically detailed and formal, and primarily used by implementors, with users referring to them in case of ambiguity; the C++ specification is frequently cited by users, for instance, due to the complexity. Related documentation includes a programming language reference, which is intended expressly for users, and a programming language rationale, which explains why the specification is written as it is; these are typically more informal than a specification.

Contents

Standardization

Not all major programming languages have specifications, and languages can exist and be popular for decades without a specification. A language may have one or more implementations, whose behavior acts as a de facto standard, without this behavior being documented in a specification. Perl (through Perl 5) is a notable example of a language without a specification, while PHP was only specified in 2014, after being in use for 20 years. [1] A language may be implemented and then specified, or specified and then implemented, or these may develop together, which is usual practice today. This is because implementations and specifications provide checks on each other: writing a specification requires precisely stating the behavior of an implementation, and implementation checks that a specification is possible, practical and consistent. Writing a specification before an implementation has largely been avoided since ALGOL 68 (1968), due to unexpected difficulties in implementation when implementation is deferred. However, languages are still occasionally implemented and gain popularity without a formal specification: an implementation is essential for use, while a specification is desirable but not essential (informally, "code talks").

ALGOL 68 was the first (and possibly one of the last) major language for which a full formal definition was made before it was implemented.

Forms

A programming language specification can take several forms, including the following:

Syntax

The syntax of a programming language represents the definition of acceptable words, i.e., formal parameters and rules upon which to decide whether a given code is valid in respect to the language. On that note, the language syntax usually consists of a combination of the following three construction components:

Syntax specification generally supposes a natural language description in order to provide modest comprehensibility. However, the formal representation of the above outlined components is usually part of the section as it favors the implementation and approval of the language and its concepts.

Semantics

Formulating a rigorous semantics of a large, complex, practical programming language is a daunting task even for experienced specialists, and the resulting specification can be difficult for anyone but experts to understand. The following are some of the ways in which programming language semantics can be described; all languages use at least one of these description methods, and some languages combine more than one [5]

Natural language

Most widely used languages are specified using natural language descriptions of their semantics. This description usually takes the form of a reference manual for the language. These manuals can run to hundreds of pages, e.g., the print version of The Java Language Specification, 3rd Ed. is 596 pages long. [6]

The imprecision of natural language as a vehicle for describing programming language semantics can lead to problems with interpreting the specification. For example, the semantics of Java threads were specified in English, and it was later discovered that the specification did not provide adequate guidance for implementors. [7]

Formal semantics

Formal semantics are grounded in mathematics. As a result, they can be more precise and less ambiguous than semantics given in natural language. However, supplemental natural language descriptions of the semantics are often included to aid understanding of the formal definitions. For example, The ISO Standard for Modula-2 contains both a formal and a natural language definition on opposing pages.

Programming languages whose semantics are described formally can reap many benefits. For example:

Automatic tool support can help to realize some of these benefits. For example, an automated theorem prover or theorem checker can increase a programmer's (or language designer's) confidence in the correctness of proofs about programs (or the language itself). The power and scalability of these tools varies widely: full formal verification is computationally intensive, rarely scales beyond programs containing a few hundred lines[ citation needed ] and may require considerable manual assistance from a programmer; more lightweight tools such as model checkers require fewer resources and have been used on programs containing tens of thousands of lines; many compilers apply static type checks to any program they compile.

Reference implementation

A reference implementation is a single implementation of a programming language that is designated as authoritative. The behavior of this implementation is held to define the proper behavior of a program written in the language. This approach has several attractive properties. First, it is precise, and requires no human interpretation: disputes as to the meaning of a program can be settled simply by executing the program on the reference implementation (provided that the implementation behaves deterministically for that program).

On the other hand, defining language semantics through a reference implementation also has several potential drawbacks. Chief among them is that it conflates limitations of the reference implementation with properties of the language. For example, if the reference implementation has a bug, then that bug must be considered to be an authoritative behavior. Another drawback is that programs written in this language may rely on quirks in the reference implementation, hindering portability across different implementations.

Nevertheless, several languages have successfully used the reference implementation approach. For example, the Perl interpreter is considered to define the authoritative behavior of Perl programs. In the case of Perl, the open-source model of software distribution has contributed to the fact that nobody has ever produced another implementation of the language, so the issues involved in using a reference implementation to define the language semantics are moot.

Test suite

Defining the semantics of a programming language in terms of a test suite involves writing a number of example programs in the language, and then describing how those programs ought to behave—perhaps by writing down their correct outputs. The programs, plus their outputs, are called the "test suite" of the language. Any correct language implementation must then produce exactly the correct outputs on the test suite programs.

The chief advantage of this approach to semantic description is that it is easy to determine whether a language implementation passes a test suite. The user can simply execute all the programs in the test suite, and compare the outputs to the desired outputs. However, when used by itself, the test suite approach has major drawbacks as well. For example, users want to run their own programs, which are not part of the test suite; indeed, a language implementation that could only run the programs in its test suite would be largely useless. But a test suite does not, by itself, describe how the language implementation should behave on any program not in the test suite; determining that behavior requires some extrapolation on the implementor's part, and different implementors may disagree. In addition, it is difficult to use a test suite to test behavior that is intended or allowed to be nondeterministic.

Therefore, in common practice, test suites are used only in combination with one of the other language specification techniques, such as a natural language description or a reference implementation.

See also

Language specifications

A few examples of official or draft language specifications:

Notes

  1. Announcing a specification for PHP, July 30, 2014, Joel Marcey
  2. "A Shorter History of Algol68". Archived from the original on August 10, 2006. Retrieved September 15, 2006.
  3. Milner, R.; M. Tofte; R. Harper; D. MacQueen (1997). The Definition of Standard ML (Revised). MIT Press. ISBN   0-262-63181-4.
  4. Kelsey, Richard; William Clinger; Jonathan Rees (February 1998). "Section 7.2 Formal semantics". Revised5 Report on the Algorithmic Language Scheme. Retrieved 2006-06-09.
  5. Jones, D. (2008). Forms of language specification (PDF). Retrieved 2012-06-23.
  6. Gosling, James; Joy, Bill; Steele, Guy; Bracha, Gilad (June 2005). "The Java Language Specification, Third Edition". Addison-Wesley Longman.
  7. William Pugh. The Java Memory Model is Fatally Flawed. Concurrency: Practice and Experience 12(6):445-455, August 2000

Related Research Articles

In computer science, an abstract data type (ADT) is a mathematical model for data types, defined by its behavior (semantics) from the point of view of a user of the data, specifically in terms of possible values, possible operations on data of this type, and the behavior of these operations. This mathematical model contrasts with data structures, which are concrete representations of data, and are the point of view of an implementer, not a user. For example, a stack has push/pop operations that follow a Last-In-First-Out rule, and can be concretely implemented using either a list or an array. Another example is a set which stores values, without any particular order, and no repeated values. Values themselves are not retrieved from sets; rather, one tests a value for membership to obtain a Boolean "in" or "not in".

In computer programming, operator overloading, sometimes termed operator ad hoc polymorphism, is a specific case of polymorphism, where different operators have different implementations depending on their arguments. Operator overloading is generally defined by a programming language, a programmer, or both.

<span class="mw-page-title-main">Programming language</span> Language for communicating instructions to a machine

A programming language is a system of notation for writing computer programs.

<span class="mw-page-title-main">Regular expression</span> Sequence of characters that forms a search pattern

A regular expression, sometimes referred to as rational expression, is a sequence of characters that specifies a match pattern in text. Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings, or for input validation. Regular expression techniques are developed in theoretical computer science and formal language theory.

In computer science, Backus–Naur form is a notation used to describe the syntax of programming languages or other formal languages. It was developed by John Backus and Peter Naur. BNF can be described as a metasyntax notation for context-free grammars. Backus–Naur form is applied wherever exact descriptions of languages are needed, such as in official language specifications, in manuals, and in textbooks on programming language theory. BNF can be used to describe document formats, instruction sets, and communication protocols.

A modeling language is any artificial language that can be used to express data, information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure of a programming language.

printf is a C standard library function that formats text and writes it to standard output.

A domain-specific language (DSL) is a computer language specialized to a particular application domain. This is in contrast to a general-purpose language (GPL), which is broadly applicable across domains. There are a wide variety of DSLs, ranging from widely used languages for common domains, such as HTML for web pages, down to languages used by only one or a few pieces of software, such as MUSH soft code. DSLs can be further subdivided by the kind of language, and include domain-specific markup languages, domain-specific modeling languages, and domain-specific programming languages. Special-purpose computer languages have always existed in the computer age, but the term "domain-specific language" has become more popular due to the rise of domain-specific modeling. Simpler DSLs, particularly ones used by a single application, are sometimes informally called mini-languages.

In computer programming, the ternary conditional operator is a ternary operator that is part of the syntax for basic conditional expressions in several programming languages. It is commonly referred to as the conditional operator, conditional expression, ternary if, or inline if. An expression if a then b else c or a ? b : c evaluates to b if the value of a is true, and otherwise to c. One can read it aloud as "if a then b otherwise c". The form a ? b : c is the most common, but alternative syntax do exist; for example, Raku uses the syntax a ?? b !! c to avoid confusion with the infix operators ? and !, whereas in Visual Basic .NET, it instead takes the form If(a, b, c).

ALGOL 60 is a member of the ALGOL family of computer programming languages. It followed on from ALGOL 58 which had introduced code blocks and the begin and end pairs for delimiting them, representing a key advance in the rise of structured programming. ALGOL 60 was one of the first languages implementing function definitions. ALGOL 60 function definitions could be nested within one another, with lexical scope. It gave rise to many other languages, including CPL, PL/I, Simula, BCPL, B, Pascal, and C. Practically every computer of the era had a systems programming language based on ALGOL 60 concepts.

In computer programming, operators are constructs defined within programming languages which behave generally like functions, but which differ syntactically or semantically.

In computer programming, a statement is a syntactic unit of an imperative programming language that expresses some action to be carried out. A program written in such a language is formed by a sequence of one or more statements. A statement may have internal components.

In computer science, a Van Wijngaarden grammar is a formalism for defining formal languages. The name derives from the formalism invented by Adriaan van Wijngaarden for the purpose of defining the ALGOL 68 programming language. The resulting specification remains its most notable application.

Behavior-driven development (BDD) involves naming software tests using domain language to describe the behavior of the code.

<span class="mw-page-title-main">Syntax (programming languages)</span> Set of rules defining correctly structured programs

In computer science, the syntax of a computer language is the rules that define the combinations of symbols that are considered to be correctly structured statements or expressions in that language. This applies both to programming languages, where the document represents source code, and to markup languages, where the document represents data.

Programming languages are used for controlling the behavior of a machine. Like natural languages, programming languages follow rules for syntax and semantics.

The following outline is provided as an overview of and topical guide to computer programming:

Shapes Constraint Language (SHACL) is a World Wide Web Consortium (W3C) standard language for describing Resource Description Framework (RDF) graphs. SHACL has been designed to enhance the semantic and technical interoperability layers of ontologies expressed as RDF graphs.