Nondeterministic programming

Last updated

A nondeterministic programming language is a language which can specify, at certain points in the program (called "choice points"), various alternatives for program flow. Unlike an if-then statement, the method of choice between these alternatives is not directly specified by the programmer; the program must decide at run time between the alternatives, via some general method applied to all choice points. A programmer specifies a limited number of alternatives, but the program must later choose between them. ("Choose" is, in fact, a typical name for the nondeterministic operator.) A hierarchy of choice points may be formed, with higher-level choices leading to branches that contain lower-level choices within them.

One method of choice is embodied in backtracking systems (such as Amb, [1] or unification in Prolog), in which some alternatives may "fail," causing the program to backtrack and try other alternatives. If all alternatives fail at a particular choice point, then an entire branch fails, and the program will backtrack further, to an older choice point. One complication is that, because any choice is tentative and may be remade, the system must be able to restore old program states by undoing side-effects caused by partially executing a branch that eventually failed.

Another method of choice is reinforcement learning, embodied in systems such as Alisp. [2] In such systems, rather than backtracking, the system keeps track of some measure of success and learns which choices often lead to success, and in which situations (both internal program state and environmental input may affect the choice). These systems are suitable for applications to robotics and other domains in which backtracking would involve attempting to undo actions performed in a dynamic environment, which may be difficult or impractical.

See also

Related Research Articles

<span class="mw-page-title-main">Regular expression</span> Sequence of characters that forms a search pattern

A regular expression, sometimes referred to as rational expression, is a sequence of characters that specifies a match pattern in text. Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings, or for input validation. Regular expression techniques are developed in theoretical computer science and formal language theory.

Structured programming is a programming paradigm aimed at improving the clarity, quality, and development time of a computer program by making extensive use of the structured control flow constructs of selection (if/then/else) and repetition, block structures, and subroutines.

In software engineering and computer science, abstraction is the process of generalizing concrete details, such as attributes, away from the study of objects and systems to focus attention on details of greater importance. Abstraction is a fundamental concept in computer science and software engineering, especially within the object-oriented programming paradigm. Examples of this include:

Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent ought to take actions in a dynamic environment in order to maximize the cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning.

In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type to every term. Usually the terms are various language constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term. Type systems formalize and enforce the otherwise implicit categories the programmer uses for algebraic data types, data structures, or other components.

In computer programming, unit testing is a software testing method by which individual units of source code—sets of one or more computer program modules together with associated control data, usage procedures, and operating procedures—are tested to determine whether they are fit for use. It is a standard step in development and implementation approaches such as Agile.

In computer science, program optimization, code optimization, or software optimization is the process of modifying a software system to make some aspect of it work more efficiently or use fewer resources. In general, a computer program may be optimized so that it executes more rapidly, or to make it capable of operating with less memory storage or other resources, or draw less power.

In object-oriented programming (OOP), the object lifetime of an object is the time between an object's creation and its destruction. Rules for object lifetime vary significantly between languages, in some cases between implementations of a given language, and lifetime of a particular object may vary from one run of the program to another.

Backtracking is a class of algorithms for finding solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.

In computer science, a deterministic algorithm is an algorithm that, given a particular input, will always produce the same output, with the underlying machine always passing through the same sequence of states. Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they can be run on real machines efficiently.

In computer science, a parsing expression grammar (PEG) is a type of analytic formal grammar, i.e. it describes a formal language in terms of a set of rules for recognizing strings in the language. The formalism was introduced by Bryan Ford in 2004 and is closely related to the family of top-down parsing languages introduced in the early 1970s. Syntactically, PEGs also look similar to context-free grammars (CFGs), but they have a different interpretation: the choice operator selects the first match in PEG, while it is ambiguous in CFG. This is closer to how string recognition tends to be done in practice, e.g. by a recursive descent parser.

In computer programming, a return statement causes execution to leave the current subroutine and resume at the point in the code immediately after the instruction which called the subroutine, known as its return address. The return address is saved by the calling routine, today usually on the process's call stack or in a register. Return statements in many programming languages allow a function to specify a return value to be passed back to the code that called the function.

Automated planning and scheduling, sometimes denoted as simply AI planning, is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. Unlike classical control and classification problems, the solutions are complex and must be discovered and optimized in multidimensional space. Planning is also related to decision theory.

In computer programming, an entry point is the place in a program where the execution of a program begins, and where the program has access to command line arguments.

A synchronous programming language is a computer programming language optimized for programming reactive systems. Computer systems can be sorted in three main classes: (1) transformational systems that take some inputs, process them, deliver their outputs, and terminate their execution; a typical example is a compiler; (2) interactive systems that interact continuously with their environment, at their own speed; a typical example is the web; and (3) reactive systems that interact continuously with their environment, at a speed imposed by the environment; a typical example is the automatic flight control system of modern airplanes. Reactive systems must therefore react to stimuli from the environment within strict time bounds. For this reason they are often also called real-time systems, and are found often in embedded systems.

In computer science, unbounded nondeterminism or unbounded indeterminacy is a property of concurrency by which the amount of delay in servicing a request can become unbounded as a result of arbitration of contention for shared resources while still guaranteeing that the request will eventually be serviced. Unbounded nondeterminism became an important issue in the development of the denotational semantics of concurrency, and later became part of research into the theoretical concept of hypercomputation.

<span class="mw-page-title-main">DPLL algorithm</span>

In logic and computer science, the Davis–Putnam–Logemann–Loveland (DPLL) algorithm is a complete, backtracking-based search algorithm for deciding the satisfiability of propositional logic formulae in conjunctive normal form, i.e. for solving the CNF-SAT problem.

Constraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clauses. An example of a clause including a constraint is A(X,Y):-X+Y>0,B(X),C(Y). In this clause, X+Y>0 is a constraint; A(X,Y), B(X), and C(Y) are literals as in regular logic programming. This clause states one condition under which the statement A(X,Y) holds: X+Y is greater than zero and both B(X) and C(Y) are true.

A regular expression denial of service (ReDoS) is an algorithmic complexity attack that produces a denial-of-service by providing a regular expression and/or an input that takes a long time to evaluate. The attack exploits the fact that many regular expression implementations have super-linear worst-case complexity; on certain regex-input pairs, the time taken can grow polynomially or exponentially in relation to the input size. An attacker can thus cause a program to spend substantial time by providing a specially crafted regular expression and/or input. The program will then slow down or become unresponsive.

In computer programming, a function is a particular sequence of program instructions that has a well-defined behavior. The sequence can be invoked by a computer program to exhibit that behavior.

References

  1. "Structure and Interpretation of Computer Programs".[ dead link ]
  2. David Andre; Stuart J. Russell (July 2002). "State abstraction for programmable reinforcement learning agents". Eighteenth National Conference on Artificial Intelligence: 119–125.