This article needs additional citations for verification .(February 2013) |
Class-based programming, or more commonly class-orientation, is a style of object-oriented programming (OOP) in which inheritance occurs via defining classes of objects, instead of inheritance occurring via the objects alone (compare prototype-based programming).
The most popular and developed model of OOP is a class-based model, instead of an object-based model. In this model, objects are entities that combine state (i.e., data), behavior (i.e., procedures, or methods ) and identity (unique existence among all other objects). The structure and behavior of an object are defined by a class, which is a definition, or blueprint, of all objects of a specific type. An object must be explicitly created based on a class and an object thus created is considered to be an instance of that class. An object is similar to a structure, with the addition of method pointers, member access control, and an implicit data member which locates instances of the class (i.e., objects of the class) in the class hierarchy (essential for runtime inheritance features).
Encapsulation prevents users from breaking the invariants of the class, which is useful because it allows the implementation of a class of objects to be changed for aspects not exposed in the interface without impact to user code. The definitions of encapsulation focus on the grouping and packaging of related information (cohesion) rather than security issues.
In class-based programming, inheritance is done by defining new classes as extensions of existing classes: the existing class is the parent class and the new class is the child class. If a child class has only one parent class, this is known as single inheritance, while if a child class can have more than one parent class, this is known as multiple inheritance. This organizes classes into a hierarchy, either a tree (if single inheritance) or lattice (if multiple inheritance).
The defining feature of inheritance is that both interface and implementation are inherited; if only interface is inherited, this is known as interface inheritance or subtyping. Inheritance can also be done without classes, as in prototype-based programming.
Class-based languages, or, to be more precise, typed languages, where subclassing is the only way of subtyping, have been criticized for mixing up implementations and interfaces—the essential principle in object-oriented programming. The critics say one might create a bag class that stores a collection of objects, then extend it to make a new class called a set class where the duplication of objects is eliminated. [1] [2] Now, a function that takes an object of the bag class may expect that adding two objects increases the size of a bag by two, yet if one passes an object of a set class, then adding two objects may or may not increase the size of a bag by two. The problem arises precisely because subclassing implies subtyping even in the instances where the principle of subtyping, known as the Liskov substitution principle, does not hold. Barbara Liskov and Jeannette Wing formulated the principle succinctly in a 1994 paper as follows:
Subtype Requirement: Let be a property provable about objects of type . Then should be true for objects of type where is a subtype of .
Thus, normally one must distinguish subtyping and subclassing. Most current object-oriented languages distinguish subtyping and subclassing, however some approaches to design do not.
Also, another common example is that a person object created from a child class cannot become an object of parent class because a child class and a parent class inherit a person class but class-based languages mostly do not allow to change the kind of class of the object at runtime. For class-based languages, this restriction is essential in order to preserve unified view of the class to its users. The users should not need to care whether one of the implementations of a method happens to cause changes that break the invariants of the class. Such changes can be made by destroying the object and constructing another in its place. Polymorphism can be used to preserve the relevant interfaces even when such changes are done, because the objects are viewed as black box abstractions and accessed via object identity. However, usually the value of object references referring to the object is changed, which causes effects to client code.
Although Simula introduced the class abstraction, the canonical example of a class-based language is Smalltalk. Others include PHP, C++, Java, C#, and Objective-C.
In object-oriented programming, a class is an extensible program-code-template for creating objects, providing initial values for state and implementations of behavior.
Multiple inheritance is a feature of some object-oriented computer programming languages in which an object or class can inherit features from more than one parent object or parent class. It is distinct from single inheritance, where an object or class may only inherit from one particular object or class.
Design Patterns: Elements of Reusable Object-Oriented Software (1994) is a software engineering book describing software design patterns. The book was written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, with a foreword by Grady Booch. The book is divided into two parts, with the first two chapters exploring the capabilities and pitfalls of object-oriented programming, and the remaining chapters describing 23 classic software design patterns. The book includes examples in C++ and Smalltalk.
Prototype-based programming is a style of object-oriented programming in which behaviour reuse is performed via a process of reusing existing objects that serve as prototypes. This model can also be known as prototypal, prototype-oriented,classless, or instance-based programming.
The Common Lisp Object System (CLOS) is the facility for object-oriented programming in ANSI Common Lisp. CLOS is a powerful dynamic object system which differs radically from the OOP facilities found in more static languages such as C++ or Java. CLOS was inspired by earlier Lisp object systems such as MIT Flavors and CommonLoops, although it is more general than either. Originally proposed as an add-on, CLOS was adopted as part of the ANSI standard for Common Lisp and has been adapted into other Lisp dialects such as EuLisp or Emacs Lisp.
In programming language theory, subtyping is a form of type polymorphism. A subtype is a datatype that is related to another datatype by some notion of substitutability, meaning that program elements, written to operate on elements of the supertype, can also operate on elements of the subtype.
This is a list of terms found in object-oriented programming.
In programming language theory and type theory, polymorphism is the use of a single symbol to represent multiple different types.
In object-oriented programming languages, a mixin is a class that contains methods for use by other classes without having to be the parent class of those other classes. How those other classes gain access to the mixin's methods depends on the language. Mixins are sometimes described as being "included" rather than "inherited".
In knowledge representation and ontology components, including for object-oriented programming and design, is-a is a subsumptive relationship between abstractions, wherein one class A is a subclass of another class B . In other words, type A is a subtype of type B when A's specification implies B's specification. That is, any object that satisfies A's specification also satisfies B's specification, because B's specification is weaker.
The Liskov substitution principle (LSP) is a particular definition of a subtyping relation, called strong behavioral subtyping, that was initially introduced by Barbara Liskov in a 1987 conference keynote address titled Data abstraction and hierarchy. It is based on the concept of "substitutability" – a principle in object-oriented programming stating that an object may be replaced by a sub-object without breaking the program. It is a semantic rather than merely syntactic relation, because it intends to guarantee semantic interoperability of types in a hierarchy, object types in particular. Barbara Liskov and Jeannette Wing described the principle succinctly in a 1994 paper as follows:
Subtype Requirement: Let be a property provable about objects of type T. Then should be true for objects of type S where S is a subtype of T.
In object-oriented programming such as is often used in C++ and Object Pascal, a virtual function or virtual method is an inheritable and overridable function or method that is dispatched dynamically. Virtual functions are an important part of (runtime) polymorphism in object-oriented programming (OOP). They allow for the execution of target functions that were not precisely identified at compile time.
Many programming language type systems support subtyping. For instance, if the type Cat
is a subtype of Animal
, then an expression of type Cat
should be substitutable wherever an expression of type Animal
is used.
In object-oriented programming, inheritance is the mechanism of basing an object or class upon another object or class, retaining similar implementation. Also defined as deriving new classes from existing ones such as super class or base class and then forming them into a hierarchy of classes. In most class-based object-oriented languages like C++, an object created through inheritance, a "child object", acquires all the properties and behaviors of the "parent object", with the exception of: constructors, destructors, overloaded operators and friend functions of the base class. Inheritance allows programmers to create classes that are built upon existing classes, to specify a new implementation while maintaining the same behaviors, to reuse code and to independently extend original software via public classes and interfaces. The relationships of objects or classes through inheritance give rise to a directed acyclic graph.
In programming languages, an abstract type is a type in a nominative type system that cannot be instantiated directly; by contrast, a concrete typecan be instantiated directly. Instantiation of an abstract type can occur only indirectly, via a concrete subtype.
Object-oriented design (OOD) is the process of planning a system of interacting objects for the purpose of solving a software problem. It is one approach to software design.
The circle–ellipse problem in software development illustrates several pitfalls which can arise when using subtype polymorphism in object modelling. The issues are most commonly encountered when using object-oriented programming (OOP). By definition, this problem is a violation of the Liskov substitution principle, one of the SOLID principles.
In object-oriented programming, behavioral subtyping is the principle that subclasses should satisfy the expectations of clients accessing subclass objects through references of superclass type, not just as regards syntactic safety but also as regards behavioral correctness. Specifically, properties that clients can prove using the specification of an object's presumed type should hold even though the object is actually a member of a subtype of that type.
Composition over inheritance in object-oriented programming (OOP) is the principle that classes should favor polymorphic behavior and code reuse by their composition over inheritance from a base or parent class. Ideally all reuse can be achieved by assembling existing components, but in practice inheritance is often needed to make new ones. Therefore inheritance and object composition typically work hand-in-hand, as discussed in the book Design Patterns (1994).
Object-oriented programming (OOP) is a programming paradigm based on the concept of objects, which can contain data and code: data in the form of fields, and code in the form of procedures. In OOP, computer programs are designed by making them out of objects that interact with one another.