Object-based language

Last updated

An object-based language is a programming language that provides a construct to encapsulate state and behavior as an object. A language that also supports inheritance or subtyping is classified as object-oriented. [1] Even though object-oriented seems like a superset of object-based, they are used as mutually exclusive alternatives, rather than overlapping.[ citation needed ] Examples of strictly object-based languages supporting an object feature but not inheritance or subtyping are early versions of Ada [2] , Visual Basic 6 (VB6), and Fortran 90.

Some classify prototype-based programming as object-based even though it supports inheritance and subtyping albeit not via a class concept. Instead an object inherits its state and behavior from a template object. A commonly used language with prototype-based programming support is JavaScript;

Related Research Articles

In object-oriented programming, a class defines the shared aspects of objects created from the class. The capabilities of a class differ between programming languages, but generally the shared aspects consist of state (variables) and behavior (methods) that are each either associated with an particular object or with all objects of that class.

<span class="mw-page-title-main">Design by contract</span> Approach for designing software

Design by contract (DbC), also known as contract programming, programming by contract and design-by-contract programming, is an approach for designing software.

<i>Design Patterns</i> 1994 software engineering book

Design Patterns: Elements of Reusable Object-Oriented Software (1994) is a software engineering book describing software design patterns. The book was written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, with a foreword by Grady Booch. The book is divided into two parts, with the first two chapters exploring the capabilities and pitfalls of object-oriented programming, and the remaining chapters describing 23 classic software design patterns. The book includes examples in C++ and Smalltalk.

Prototype-based programming is a style of object-oriented programming in which behavior reuse is performed via a process of reusing existing objects that serve as prototypes. This model can also be known as prototypal, prototype-oriented,classless, or instance-based programming.

<span class="mw-page-title-main">Object–relational database</span> Database management system

An object–relational database (ORD), or object–relational database management system (ORDBMS), is a database management system (DBMS) similar to a relational database, but with an object-oriented database model: objects, classes and inheritance are directly supported in database schemas and in the query language. Also, as with pure relational systems, it supports extension of the data model with custom data types and methods.

In software development, an object is an entity that has state, behavior, and identity. An object can model some part of reality or can be an invention of the design process whose collaborations with other such objects serve as the mechanisms that provide some higher-level behavior. Put another way, an object represents an individual, identifiable item, unit, or entity, either real or abstract, with a well-defined role in the problem domain.

<span class="mw-page-title-main">Common Lisp Object System</span>

The Common Lisp Object System (CLOS) is the facility for object-oriented programming in ANSI Common Lisp. CLOS is a powerful dynamic object system which differs radically from the OOP facilities found in more static languages such as C++ or Java. CLOS was inspired by earlier Lisp object systems such as MIT Flavors and CommonLoops, although it is more general than either. Originally proposed as an add-on, CLOS was adopted as part of the ANSI standard for Common Lisp and has been adapted into other Lisp dialects such as EuLisp or Emacs Lisp.

In programming language theory, subtyping is a form of type polymorphism. A subtype is a datatype that is related to another datatype by some notion of substitutability, meaning that program elements, written to operate on elements of the supertype, can also operate on elements of the subtype.

In programming language theory and type theory, polymorphism is the use of one symbol to represent multiple different types.

In object-oriented programming languages, a mixin is a class that contains methods for use by other classes without having to be the parent class of those other classes. How those other classes gain access to the mixin's methods depends on the language. Mixins are sometimes described as being "included" rather than "inherited".

<span class="mw-page-title-main">Liskov substitution principle</span> Object-oriented programming principle

The Liskov substitution principle (LSP) is a particular definition of a subtyping relation, called strong behavioral subtyping, that was initially introduced by Barbara Liskov in a 1987 conference keynote address titled Data abstraction and hierarchy. It is based on the concept of "substitutability" – a principle in object-oriented programming stating that an object may be replaced by a sub-object without breaking the program. It is a semantic rather than merely syntactic relation, because it intends to guarantee semantic interoperability of types in a hierarchy, object types in particular. Barbara Liskov and Jeannette Wing described the principle succinctly in a 1994 paper as follows:

Subtype Requirement: Let be a property provable about objects of type T. Then should be true for objects of type S where S is a subtype of T.

In object-oriented programming, delegation refers to evaluating a member of one object in the context of another original object. Delegation can be done explicitly, by passing the responsibilities of the sending object to the receiving object, which can be done in any object-oriented language; or implicitly, by the member lookup rules of the language, which requires language support for the feature. Implicit delegation is the fundamental method for behavior reuse in prototype-based programming, corresponding to inheritance in class-based programming. The best-known languages that support delegation at the language level are Self, which incorporates the notion of delegation through its notion of mutable parent slots that are used upon method lookup on self calls, and JavaScript; see JavaScript delegation.

Class-based programming, or more commonly class-orientation, is a style of object-oriented programming (OOP) in which inheritance occurs via defining classes of objects, instead of inheritance occurring via the objects alone.

In computer science, object composition and object aggregation are closely related ways to combine objects or data types into more complex ones. In conversation, the distinction between composition and aggregation is often ignored. Common kinds of compositions are objects used in object-oriented programming, tagged unions, sets, sequences, and various graph structures. Object compositions relate to, but are not the same as, data structures.

In object-oriented programming, inheritance is the mechanism of basing an object or class upon another object or class, retaining similar implementation. Also defined as deriving new classes from existing ones such as super class or base class and then forming them into a hierarchy of classes. In most class-based object-oriented languages like C++, an object created through inheritance, a "child object", acquires all the properties and behaviors of the "parent object", with the exception of: constructors, destructors, overloaded operators and friend functions of the base class. Inheritance allows programmers to create classes that are built upon existing classes, to specify a new implementation while maintaining the same behaviors, to reuse code and to independently extend original software via public classes and interfaces. The relationships of objects or classes through inheritance give rise to a directed acyclic graph.

In object-oriented programming, behavioral subtyping is the principle that subclasses should satisfy the expectations of clients accessing subclass objects through references of superclass type, not just as regards syntactic safety but also as regards behavioral correctness. Specifically, properties that clients can prove using the specification of an object's presumed type should hold even though the object is actually a member of a subtype of that type.

Data, context, and interaction (DCI) is a paradigm used in computer software to program systems of communicating objects. Its goals are:

<span class="mw-page-title-main">Composition over inheritance</span> Software design pattern

Composition over inheritance in object-oriented programming (OOP) is the principle that classes should favor polymorphic behavior and code reuse by their composition over inheritance from a base or parent class. Ideally all reuse can be achieved by assembling existing components, but in practice inheritance is often needed to make new ones. Therefore inheritance and object composition typically work hand-in-hand, as discussed in the book Design Patterns (1994).

<span class="mw-page-title-main">Object-oriented programming</span> Programming paradigm based on the concept of objects

Object-oriented programming (OOP) is a programming paradigm based on the concept of objects, which can contain data and code: data in the form of fields, and code in the form of procedures. In OOP, computer programs are designed by making them out of objects that interact with one another.

Object schizophrenia or self schizophrenia is a complication arising from delegation and related techniques in object-oriented programming, where self/this can refer to more than one object. By way of metaphor with the public confusion of dissociative identity disorder with the psychiatric diagnosis of schizophrenia, the former being associated with "split personalities," this configuration is called object schizophrenia or self schizophrenia in object-oriented programming.

References

  1. Wegner, Peter (December 1987). "Dimensions of object-based language design" (PDF). In Meyrowitz, Norman (ed.). Conference proceedings on Object-oriented programming systems, languages and applications - OOPSLA '87. Vol. 22. pp. 168–182. doi:10.1145/38765.38823. ISBN   0897912470. S2CID   819420.
  2. Barbey, S.; Kempe, M.; Strohmeier, A. (1993). "Object-Oriented Programming with Ada 9X". Draft Technical Report. Swiss Federal Institute of Technology in Lausanne Software Engineering Laboratory. Retrieved 15 December 2013. Ada 83 itself is generally not considered to be object-oriented; rather, according to the terminology of Wegner [Weg 87], it is said to be object-based, since it provides only a restricted form of inheritance and it lacks polymorphism.