This article needs additional citations for verification .(April 2022) |
A system programming language is a programming language used for system programming; such languages are designed for writing system software, which usually requires different development approaches when compared with application software. Edsger Dijkstra referred to these languages as machine oriented high order languages, or mohol. [1]
General-purpose programming languages tend to focus on generic features to allow programs written in the language to use the same code on different platforms. Examples of such languages include ALGOL and Pascal. This generic quality typically comes at the cost of denying direct access to the machine's internal workings, and this often has negative effects on performance.
System languages, in contrast, are designed not for compatibility, but for performance and ease of access to the underlying hardware while still providing high-level programming concepts like structured programming. Examples include ESPOL and SPL, both of which are similar to ALGOL in syntax but tuned to their respective platforms. Others are cross-platform but designed to work close to the hardware, like BLISS, JOVIAL and BCPL.
Some languages straddle the system and application domains, bridging the gap between these uses. The canonical example is C, which is used widely for both system and application programming. Some modern languages also do this such as Rust and Swift.
In contrast with application languages, system programming languages typically offer more-direct access to the physical hardware of the machine: an archetypical system programming language in this sense was BCPL. System programming languages often lack built-in input/output (I/O) facilities because a system-software project usually develops its own I/O mechanisms or builds on basic monitor I/O or screen management facilities. The distinction between languages used for system programming and application programming became blurred over time with the widespread popularity of PL/I, C and Pascal.
The earliest system software was written in assembly language primarily because there was no alternative, but also for reasons including efficiency of object code, compilation time, and ease of debugging. Application languages such as FORTRAN were used for system programming, although they usually still required some routines to be written in assembly language. [2]
Mid-level languages "have much of the syntax and facilities of a higher level language, but also provide direct access in the language (as well as providing assembly language) to machine features." [2] The earliest of these was ESPOL on Burroughs mainframes in about 1960, followed by Niklaus Wirth's PL360 (first written on a Burroughs system as a cross compiler), which had the general syntax of ALGOL 60 but whose statements directly manipulated CPU registers and memory. Other languages in this category include MOL-360 and PL/S.
As an example, a typical PL360 statement is R9 := R8 and R7 shll 8 or R6
, signifying that registers 8 and 7 should be and'ed together, the result shifted left 8 bits, the result of that or'ed with the contents of register 6, and the final result placed into register 9. [3]
While PL360 is at the semantic level of assembly language, another kind of system programming language operates at a higher semantic level, but has specific extensions designed to make the language suitable for system programming. An early example of this kind of language is LRLTRAN, [4] which extended Fortran with features for character and bit manipulation, pointers, and directly addressed jump tables.
Subsequently, languages such as C were developed, where the combination of features was sufficient to write system software, and a compiler could be developed that generated efficient object programs on modest hardware. Such a language generally omits features that cannot be implemented efficiently, and adds a small number of machine-dependent features needed to access specific hardware abilities; inline assembly code, such as C's asm
statement, is often used for this purpose. Although many such languages were developed, [1] C and C++ are the ones which survived.
Language | Originator | Birth date | Influenced by | Used for | |
---|---|---|---|---|---|
JOVIAL | System Development Corporation | 1960 | ALGOL 58 | Many systems, mostly military | |
ESPOL | Burroughs Corporation | 1961 | ALGOL 60 | MCP | |
PL/I | IBM, SHARE | 1964 | ALGOL, FORTRAN, some COBOL | Multics | |
PL/S | IBM | 1960's | PL/I | OS/360 and successors | |
PL360 | Niklaus Wirth | 1968 | ALGOL 60 | ALGOL W | |
Pascal | Niklaus Wirth | 1970 | ALGOL W | Apollo Computer Aegis, Apple MacApp, UCSD p-System | |
BLISS | Carnegie Mellon University | 1970 | ALGOL-PL/I [5] | VMS (portions) | |
Language for Systems Development (LSD) | R. Daniel Bergeron, et al. (Brown University) | 1971 | PL/I | ||
C | Dennis Ritchie | 1972 | BCPL, B | Most operating system kernels, including Unix-like systems | |
System Programming Language (SPL) | Hewlett-Packard | 1972 | ALGOL 60, ESPOL | HP 3000 system software, including MPE | |
NEWP | Burroughs | 1970's | ESPOL, ALGOL | MCP | |
PL.8 | IBM | 1970's | PL/I | compiler development, AIX (versions 1 and 2 only), IBM mainframe firmware | |
PL-6 | Honeywell, Inc. | 1970's | PL/I | CP-6 | |
SYMPL | CDC | 1970's | JOVIAL | NOS subsystems, most compilers, FSE editor | |
C++ | Bjarne Stroustrup | 1979 | C, Simula | GUI applications (Qt, Windows, etc.), games (Unreal Engine) | |
S3 | ICL | 1980s | ALGOL 68 | ICL VME | |
Ada | Jean Ichbiah, S. Tucker Taft | 1983 | ALGOL 68, Pascal, C++, Eiffel | Military, [6] aerospace [7] mass transportation, [8] high-integrity computation, and operating system kernels [9] [10] [11] | |
D | Digital Mars | 2001 | C++ | ||
Nim | Andreas Rumpf | 2008 | Python, Ada, Lisp, Oberon, C++, Modula-3, Object Pascal | ||
Go | 2009 | Oberon, C, Pascal | Kubernetes, Docker | ||
Mojo | Modular Inc. [12] | 2023 | C, C++, Python, Rust, Swift, Zig | ||
Rust | Mozilla Research [13] | 2010 | C++, Haskell, Erlang, Ruby | Servo, Redox OS, Linux kernel | |
Swift | Apple Inc. | 2014 | C, Objective-C, D, Rust | macOS, iOS, watchOS, and tvOS app development [a] | |
Zig | Andrew Kelley | 2016 | C, C++, LLVM IR, Go, Rust |
ALGOL is a family of imperative computer programming languages originally developed in 1958. ALGOL heavily influenced many other languages and was the standard method for algorithm description used by the Association for Computing Machinery (ACM) in textbooks and academic sources for more than thirty years.
In computing, a compiler is a computer program that translates computer code written in one programming language into another language. The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language to create an executable program.
Mesa is a programming language developed in the mid 1970s at the Xerox Palo Alto Research Center in Palo Alto, California, United States. The language name was a pun based upon the programming language catchphrases of the time, because Mesa is a "high level" programming language.
Niklaus Emil Wirth was a Swiss computer scientist. He designed several programming languages, including Pascal, and pioneered several classic topics in software engineering. In 1984, he won the Turing Award, generally recognized as the highest distinction in computer science, "for developing a sequence of innovative computer languages".
Oberon is a general-purpose programming language first published in 1987 by Niklaus Wirth and the latest member of the Wirthian family of ALGOL-like languages. Oberon was the result of a concentrated effort to increase the power of Modula-2, the direct successor of Pascal, and simultaneously to reduce its complexity. Its principal new feature is the concept of data type extension of record types. It permits constructing new data types on the basis of existing ones and to relate them, deviating from the dogma of strict static typing of data. Type extension is Wirth's way of inheritance reflecting the viewpoint of the parent site. Oberon was developed as part of the implementation of an operating system, also named Oberon at ETH Zurich in Switzerland. The name was inspired both by the Voyager space probe's pictures of the moon of the planet Uranus, named Oberon, and because Oberon is famous as the king of the elves.
Pascal is an imperative and procedural programming language, designed by Niklaus Wirth as a small, efficient language intended to encourage good programming practices using structured programming and data structuring. It is named after French mathematician, philosopher and physicist Blaise Pascal.
In computing, a virtual machine (VM) is the virtualization or emulation of a computer system. Virtual machines are based on computer architectures and provide the functionality of a physical computer. Their implementations may involve specialized hardware, software, or a combination of the two. Virtual machines differ and are organized by their function, shown here:
In computer science, imperative programming is a programming paradigm of software that uses statements that change a program's state. In much the same way that the imperative mood in natural languages expresses commands, an imperative program consists of commands for the computer to perform. Imperative programming focuses on describing how a program operates step by step, rather than on high-level descriptions of its expected results.
ALGOL W is a programming language. It is based on a proposal for ALGOL X by Niklaus Wirth and Tony Hoare as a successor to ALGOL 60. ALGOL W is a relatively simple upgrade of the original ALGOL 60, adding string, bitstring, complex number and reference to record data types and call-by-result passing of parameters, introducing the while
statement, replacing switch
with the case
statement, and generally tightening up the language.
A high-level assembler in computing is an assembler for assembly language that incorporate features found in a high-level programming language.
The Burroughs Large Systems Group produced a family of large 48-bit mainframes using stack machine instruction sets with dense syllables. The first machine in the family was the B5000 in 1961, which was optimized for compiling ALGOL 60 programs extremely well, using single-pass compilers. The B5000 evolved into the B5500 and the B5700. Subsequent major redesigns include the B6500/B6700 line and its successors, as well as the separate B8500 line.
ALGOL 60 is a member of the ALGOL family of computer programming languages. It followed on from ALGOL 58 which had introduced code blocks and the begin
and end
pairs for delimiting them, representing a key advance in the rise of structured programming. ALGOL 60 was one of the first languages implementing function definitions. ALGOL 60 function definitions could be nested within one another, with lexical scope. It gave rise to many other languages, including CPL, PL/I, Simula, BCPL, B, Pascal, and C. Practically every computer of the era had a systems programming language based on ALGOL 60 concepts.
In computer software, a general-purpose programming language (GPL) is a programming language for building software in a wide variety of application domains. Conversely, a domain-specific programming language (DSL) is used within a specific area. For example, Python is a GPL, while SQL is a DSL for querying relational databases.
The history of programming languages spans from documentation of early mechanical computers to modern tools for software development. Early programming languages were highly specialized, relying on mathematical notation and similarly obscure syntax. Throughout the 20th century, research in compiler theory led to the creation of high-level programming languages, which use a more accessible syntax to communicate instructions.
XPL, for expert's programming language is a programming language based on PL/I, a portable one-pass compiler written in its own language, and a parser generator tool for easily implementing similar compilers for other languages. XPL was designed in 1967 as a way to teach compiler design principles and as starting point for students to build compilers for their own languages.
Modular programming is a software design technique that emphasizes separating the functionality of a program into independent, interchangeable modules, such that each contains everything necessary to execute only one aspect or "concern" of the desired functionality.
The New Executive Programming Language (NEWP) is an internal structured-syntax system language for Unisys Master Control Program (MCP) systems. The language is used for writing the MCP operating system and other system utility software, though it can also be used to write user system software with the restriction to not use UNSAFE mode.
PL360 is a system programming language designed by Niklaus Wirth and written by Wirth, Joseph W. Wells Jr., and Edwin Satterthwaite Jr. for the IBM System/360 computer at Stanford University. A description of PL360 was published in early 1968, although the implementation was probably completed before Wirth left Stanford in 1967.
In computing, a compiler is a computer program that transforms source code written in a programming language or computer language, into another computer language. The most common reason for transforming source code is to create an executable program.