System programming language

Last updated

A system programming language is a programming language used for system programming; such languages are designed for writing system software, which usually requires different development approaches when compared with application software. Edsger Dijkstra referred to these languages as machine oriented high order languages, or mohol. [1]

Contents

General-purpose programming languages tend to focus on generic features to allow programs written in the language to use the same code on different platforms. Examples of such languages include ALGOL and Pascal. This generic quality typically comes at the cost of denying direct access to the machine's internal workings, and this often has negative effects on performance.

System languages, in contrast, are designed not for compatibility, but for performance and ease of access to the underlying hardware while still providing high-level programming concepts like structured programming. Examples include ESPOL and SPL, both of which are similar to ALGOL in syntax but tuned to their respective platforms. Others are cross-platform but designed to work close to the hardware, like BLISS, JOVIAL and BCPL.

Some languages straddle the system and application domains, bridging the gap between these uses. The canonical example is C, which is used widely for both system and application programming. Some modern languages also do this such as Rust and Swift.

Features

In contrast with application languages, system programming languages typically offer more-direct access to the physical hardware of the machine: an archetypical system programming language in this sense was BCPL. System programming languages often lack built-in input/output (I/O) facilities because a system-software project usually develops its own I/O mechanisms or builds on basic monitor I/O or screen management facilities. The distinction between languages used for system programming and application programming became blurred over time with the widespread popularity of PL/I, C and Pascal.

History

The earliest system software was written in assembly language primarily because there was no alternative, but also for reasons including efficiency of object code, compilation time, and ease of debugging. Application languages such as FORTRAN were used for system programming, although they usually still required some routines to be written in assembly language. [2]

Mid-level languages

Mid-level languages "have much of the syntax and facilities of a higher level language, but also provide direct access in the language (as well as providing assembly language) to machine features." [2] The earliest of these was ESPOL on Burroughs mainframes in about 1960, followed by Niklaus Wirth's PL360 (first written on a Burroughs system as a cross compiler), which had the general syntax of ALGOL 60 but whose statements directly manipulated CPU registers and memory. Other languages in this category include MOL-360 and PL/S.

As an example, a typical PL360 statement is R9 := R8 and R7 shll 8 or R6, signifying that registers 8 and 7 should be and'ed together, the result shifted left 8 bits, the result of that or'ed with the contents of register 6, and the final result placed into register 9. [3]

Higher-level languages

While PL360 is at the semantic level of assembly language, another kind of system programming language operates at a higher semantic level, but has specific extensions designed to make the language suitable for system programming. An early example of this kind of language is LRLTRAN, [4] which extended Fortran with features for character and bit manipulation, pointers, and directly addressed jump tables.

Subsequently, languages such as C were developed, where the combination of features was sufficient to write system software, and a compiler could be developed that generated efficient object programs on modest hardware. Such a language generally omits features that cannot be implemented efficiently, and adds a small number of machine-dependent features needed to access specific hardware abilities; inline assembly code, such as C's asm statement, is often used for this purpose. Although many such languages were developed, [1] C and C++ are the ones which survived.

Major languages

LanguageOriginatorBirth dateInfluenced byUsed for
JOVIAL System Development Corporation 1960 ALGOL 58 Many systems, mostly military
ESPOL Burroughs Corporation 1961 ALGOL 60 MCP
PL/I IBM, SHARE 1964ALGOL, FORTRAN, some COBOL Multics
PL/S IBM 1960's PL/I OS/360 and successors
PL360 Niklaus Wirth 1968ALGOL 60 ALGOL W
Pascal Niklaus Wirth 1970 ALGOL W Apollo Computer Aegis, Apple MacApp, UCSD p-System
BLISS Carnegie Mellon University 1970ALGOL-PL/I [5] VMS (portions)
Language for Systems Development (LSD)R. Daniel Bergeron, et al. (Brown University)1971 PL/I
C Dennis Ritchie 1972 BCPL, B Most operating system kernels, including Unix-like systems
System Programming Language (SPL) Hewlett-Packard 1972 ALGOL 60, ESPOL HP 3000 system software, including MPE
NEWP Burroughs1970'sESPOL, ALGOLMCP
PL.8 IBM 1970's PL/I compiler development, AIX (versions 1 and 2 only), IBM mainframe firmware
PL-6 Honeywell, Inc. 1970's PL/I CP-6
SYMPL CDC 1970's JOVIAL NOS subsystems, most compilers, FSE editor
C++ Bjarne Stroustrup 1979 C, Simula GUI applications (Qt, Windows, etc.), games (Unreal Engine)
S3 ICL 1980s ALGOL 68 ICL VME
Ada Jean Ichbiah, S. Tucker Taft1983 ALGOL 68, Pascal, C++, Eiffel Military, [6] aerospace [7] mass transportation, [8] high-integrity computation, and operating system kernels [9] [10] [11]
D Digital Mars 2001 C++
Nim Andreas Rumpf2008 Python, Ada, Lisp, Oberon, C++, Modula-3, Object Pascal
Go Google 2009 Oberon, C, Pascal Kubernetes, Docker
Mojo Modular Inc. [12] 2023 C, C++, Python, Rust, Swift, Zig
Rust Mozilla Research [13] 2010 C++, Haskell, Erlang, Ruby Servo, Redox OS, Linux kernel
Swift Apple Inc. 2014 C, Objective-C, D, Rust macOS, iOS, watchOS, and tvOS app development [a]
Zig Andrew Kelley2016 C, C++, LLVM IR, Go, Rust

See also

Notes

Related Research Articles

<span class="mw-page-title-main">ALGOL</span> Family of programming languages

ALGOL is a family of imperative computer programming languages originally developed in 1958. ALGOL heavily influenced many other languages and was the standard method for algorithm description used by the Association for Computing Machinery (ACM) in textbooks and academic sources for more than thirty years.

In computing, a compiler is a computer program that translates computer code written in one programming language into another language. The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language to create an executable program.

Mesa is a programming language developed in the mid 1970s at the Xerox Palo Alto Research Center in Palo Alto, California, United States. The language name was a pun based upon the programming language catchphrases of the time, because Mesa is a "high level" programming language.

<span class="mw-page-title-main">Niklaus Wirth</span> Swiss computer scientist (1934–2024)

Niklaus Emil Wirth was a Swiss computer scientist. He designed several programming languages, including Pascal, and pioneered several classic topics in software engineering. In 1984, he won the Turing Award, generally recognized as the highest distinction in computer science, "for developing a sequence of innovative computer languages".

<span class="mw-page-title-main">Oberon (programming language)</span> General-purpose programming language

Oberon is a general-purpose programming language first published in 1987 by Niklaus Wirth and the latest member of the Wirthian family of ALGOL-like languages. Oberon was the result of a concentrated effort to increase the power of Modula-2, the direct successor of Pascal, and simultaneously to reduce its complexity. Its principal new feature is the concept of data type extension of record types. It permits constructing new data types on the basis of existing ones and to relate them, deviating from the dogma of strict static typing of data. Type extension is Wirth's way of inheritance reflecting the viewpoint of the parent site. Oberon was developed as part of the implementation of an operating system, also named Oberon at ETH Zurich in Switzerland. The name was inspired both by the Voyager space probe's pictures of the moon of the planet Uranus, named Oberon, and because Oberon is famous as the king of the elves.

Pascal is an imperative and procedural programming language, designed by Niklaus Wirth as a small, efficient language intended to encourage good programming practices using structured programming and data structuring. It is named after French mathematician, philosopher and physicist Blaise Pascal.

<span class="mw-page-title-main">Virtual machine</span> Software that emulates an entire computer

In computing, a virtual machine (VM) is the virtualization or emulation of a computer system. Virtual machines are based on computer architectures and provide the functionality of a physical computer. Their implementations may involve specialized hardware, software, or a combination of the two. Virtual machines differ and are organized by their function, shown here:

In computer science, imperative programming is a programming paradigm of software that uses statements that change a program's state. In much the same way that the imperative mood in natural languages expresses commands, an imperative program consists of commands for the computer to perform. Imperative programming focuses on describing how a program operates step by step, rather than on high-level descriptions of its expected results.

ALGOL W is a programming language. It is based on a proposal for ALGOL X by Niklaus Wirth and Tony Hoare as a successor to ALGOL 60. ALGOL W is a relatively simple upgrade of the original ALGOL 60, adding string, bitstring, complex number and reference to record data types and call-by-result passing of parameters, introducing the while statement, replacing switch with the case statement, and generally tightening up the language.

A high-level assembler in computing is an assembler for assembly language that incorporate features found in a high-level programming language.

The Burroughs Large Systems Group produced a family of large 48-bit mainframes using stack machine instruction sets with dense syllables. The first machine in the family was the B5000 in 1961, which was optimized for compiling ALGOL 60 programs extremely well, using single-pass compilers. The B5000 evolved into the B5500 and the B5700. Subsequent major redesigns include the B6500/B6700 line and its successors, as well as the separate B8500 line.

ALGOL 60 is a member of the ALGOL family of computer programming languages. It followed on from ALGOL 58 which had introduced code blocks and the begin and end pairs for delimiting them, representing a key advance in the rise of structured programming. ALGOL 60 was one of the first languages implementing function definitions. ALGOL 60 function definitions could be nested within one another, with lexical scope. It gave rise to many other languages, including CPL, PL/I, Simula, BCPL, B, Pascal, and C. Practically every computer of the era had a systems programming language based on ALGOL 60 concepts.

In computer software, a general-purpose programming language (GPL) is a programming language for building software in a wide variety of application domains. Conversely, a domain-specific programming language (DSL) is used within a specific area. For example, Python is a GPL, while SQL is a DSL for querying relational databases.

<span class="mw-page-title-main">History of programming languages</span>

The history of programming languages spans from documentation of early mechanical computers to modern tools for software development. Early programming languages were highly specialized, relying on mathematical notation and similarly obscure syntax. Throughout the 20th century, research in compiler theory led to the creation of high-level programming languages, which use a more accessible syntax to communicate instructions.

XPL, for expert's programming language is a programming language based on PL/I, a portable one-pass compiler written in its own language, and a parser generator tool for easily implementing similar compilers for other languages. XPL was designed in 1967 as a way to teach compiler design principles and as starting point for students to build compilers for their own languages.

Modular programming is a software design technique that emphasizes separating the functionality of a program into independent, interchangeable modules, such that each contains everything necessary to execute only one aspect or "concern" of the desired functionality.

The New Executive Programming Language (NEWP) is an internal structured-syntax system language for Unisys Master Control Program (MCP) systems. The language is used for writing the MCP operating system and other system utility software, though it can also be used to write user system software with the restriction to not use UNSAFE mode.

PL360 is a system programming language designed by Niklaus Wirth and written by Wirth, Joseph W. Wells Jr., and Edwin Satterthwaite Jr. for the IBM System/360 computer at Stanford University. A description of PL360 was published in early 1968, although the implementation was probably completed before Wirth left Stanford in 1967.

<span class="mw-page-title-main">History of compiler construction</span>

In computing, a compiler is a computer program that transforms source code written in a programming language or computer language, into another computer language. The most common reason for transforming source code is to create an executable program.

References

  1. 1 2 van der Poel, W. L.; Maarssen, L. A., eds. (27–31 August 1973). Machine oriented higher level languages. IFIP Working Conference on Machine Oriented Higher Level Languages (MOHL). Trondheim, Norway: International Federation for Information Processing. Proceedings published 1974.
  2. 1 2 Sammet, Jean (October 1971). "Brief Survey of Languages Used for Systems Implementation". ACM SIGPLAN Notices. 6 (9): 1–19. doi: 10.1145/942596.807055 .
  3. Wirth, Niklaus (1968). "PL360, A Programming Language for the 360 Computers". Journal of the ACM. 15 (1): 37–74. doi:10.1145/321439.321442.
  4. Mendicino, Sam F.; Hughes, Robert A.; Martin, Jeanne T.; McMahon, Frank H.; Ranelletti, John E.; Zwakenberg, Richard G. (1968). "The LRLTRAN Compiler". Communications of the ACM. 11 (11): 747–755. doi:10.1145/364139.364154.
  5. Wulf, W. A.; Russell, D. B.; Haberman, A. N. (December 1971). "BLISS: A Language for Systems Programming". Communications of the ACM. 14 (12): 780–790. CiteSeerX   10.1.1.691.9765 . doi:10.1145/362919.362936.
  6. "Case Study, BAE Systems Eurofighter Typhoon" (PDF).
  7. "What programming languages are used for equipment onboard aircraft?".
  8. "TGVweb - the TGV Signaling System".
  9. "Ironclad".
  10. "M2OS. RTOS with simple tasking support for small microcontrollers".
  11. "Jgrivera67/HiRTOS". GitHub .
  12. "Modular Inc." www.modular.com. Retrieved 2024-03-25.
  13. "Mozilla Research Projects". Archived from the original on 2014-01-04.