PL360

Last updated
PL360
Paradigms Procedural, imperative, structured
Family Wirth ALGOL
Designed by Niklaus Wirth,
Joseph W. Wells Jr.,
Edwin Satterthwaite Jr.
Developer Stanford University
First appeared1966;57 years ago (1966)
Typing discipline Static, strong
Scope Lexical (static)
Implementation language ALGOL, then PL360
Platform Burroughs B5000, IBM System/360
Influenced by
ALGOL, Executive Systems Problem Oriented Language (ESPOL)
Influenced
ALGOL W

PL360 (or PL/360) is a system programming language designed by Niklaus Wirth and written by Wirth, Joseph W. Wells Jr., and Edwin Satterthwaite Jr. for the IBM System/360 computer at Stanford University. A description of PL360 was published in early 1968, although the implementation was probably completed before Wirth left Stanford in 1967. [1]

Contents

Description

PL/360 is a one pass compiler with a syntax similar to ALGOL that provides facilities for specifying exact machine code (language) instructions and registers similar [lower-alpha 1] to assembly language, but also provides features commonly found in high-level programming languages, such as complex arithmetic expressions and control structures. Wirth used PL360 to create ALGOL W.

Data types are: [2] :8

Registers can contain integer, real, or long real.

Individual System/360 instructions can be generated inline using the PL360 "function statement" that defined an instruction by format and operation code. Function arguments were assigned sequentially to fields in the instruction. Examples[ clarification needed ] are:

definitionreference
UNPK(10,#F300)UNPK(3,7,B2,worker)
EX(2,#4400)EX(R1,MVC(0,lines,buffer))note nested reference

Example

R0, R1, and R2, and FLAG are predeclared names.

BEGININTEGERBUCKET;IFFLAGTHENBEGINBUCKET:=R0;R0:=R1;R1:=R2;R2:=BUCKET;ENDELSEBEGINBUCKET:=R2;R2:=R1;R1:=R0;R0:=BUCKET;ENDRESET(FLAG);END

Implementation

Wirth was at Stanford between 1963 and 1967, during the earlier part of which he was developing his Euler compiler and interpreter, the sources of which are dated 1965. Also in 1965, Stanford updated their core memory based B5000 with drum storage to a core memory based B5500 with disk storage.

Since the target IBM S/360 (which was to replace an existing IBM 7090) was not installed until 1967, the initial implementation of PL360 was written in ALGOL and tested on Stanford's B5500. [3] Once working, the compiler was then recoded in PL360, recompiled on the Burroughs system, and moved as a binary file to the S/360. [1] :66

The B5500 is programmed in a high-level ALGOL-derived language Executive Systems Problem Oriented Language (ESPOL), and PL360 was intended to bring a comparable facility to the IBM mainframe architecture, although it was lacking major facilities of both Assembler F and ESPOL. This intent was largely ignored, with programmers continuing to use implementations of IBM's macro assemblers.

However, in the early 1970s, PL360 was extended to provide more capabilities, and was the programming language of choice for developing Stanford Physics Information Retrieval System (SPIRES), Stanford's Database Management System.

See also

Notes

  1. But lacking facilities for implicit addressability, e.g., USING

Related Research Articles

<span class="mw-page-title-main">Assembly language</span> Low-level programming language

In computer programming, assembly language, often referred to simply as assembly and commonly abbreviated as ASM or asm, is any low-level programming language with a very strong correspondence between the instructions in the language and the architecture's machine code instructions. Assembly language usually has one statement per machine instruction (1:1), but constants, comments, assembler directives, symbolic labels of, e.g., memory locations, registers, and macros are generally also supported.

<span class="mw-page-title-main">Niklaus Wirth</span> Swiss computer scientist (born 1934)

Niklaus Emil Wirth is a Swiss computer scientist. He has designed several programming languages, including Pascal, and pioneered several classic topics in software engineering. In 1984, he won the Turing Award, generally recognized as the highest distinction in computer science, for developing a sequence of innovative computer languages.

<span class="mw-page-title-main">Oberon (programming language)</span>

Oberon is a general-purpose programming language first published in 1987 by Niklaus Wirth and the latest member of the Wirthian family of ALGOL-like languages. Oberon was the result of a concentrated effort to increase the power of Modula-2, the direct successor of Pascal, and simultaneously to reduce its complexity. Its principal new feature is the concept of type extension of record types. It permits constructing new data types on the basis of existing ones and to relate them, deviating from the dogma of strictly static typing of data. Type extension is Wirth's way of inheritance reflecting the viewpoint of the parent site. Oberon was developed as part of the implementation of an operating system, also named Oberon at ETH Zurich in Switzerland. The name was inspired both by the Voyager space probe's pictures of the moon of the planet Uranus, named Oberon, and because Oberon is famous as the king of the elfs.

Pascal is an imperative and procedural programming language, designed by Niklaus Wirth as a small, efficient language intended to encourage good programming practices using structured programming and data structuring. It is named after French mathematician, philosopher and physicist Blaise Pascal.

In computer programming, a p-code machine is a virtual machine designed to execute p-code. This term is applied both generically to all such machines, and to specific implementations, the most famous being the p-Machine of the Pascal-P system, particularly the UCSD Pascal implementation, among whose developers, the p in p-code was construed to mean pseudo more often than portable, thus pseudo-code meaning instructions for a pseudo-machine.

MAD is a programming language and compiler for the IBM 704 and later the IBM 709, IBM 7090, IBM 7040, UNIVAC 1107, UNIVAC 1108, Philco 210-211, and eventually IBM System/370 mainframe computers. Developed in 1959 at the University of Michigan by Bernard Galler, Bruce Arden and Robert M. Graham, MAD is a variant of the ALGOL language. It was widely used to teach programming at colleges and universities during the 1960s and played a minor role in the development of Compatible Time-Sharing System (CTSS), Multics, and the Michigan Terminal System computer operating systems. The original version of the chatbot ELIZA was written in MAD-SLIP.

ALGOL W is a programming language. It is based on a proposal for ALGOL X by Niklaus Wirth and Tony Hoare as a successor to ALGOL 60. ALGOL W is a relatively simple upgrade of the original ALGOL 60, adding string, bitstring, complex number and reference to record data types and call-by-result passing of parameters, introducing the while statement, replacing switch with the case statement, and generally tightening up the language.

A high-level assembler in computing is an assembler for assembly language that incorporate features found in a high-level programming language.

The Burroughs Large Systems Group produced a family of large 48-bit mainframes using stack machine instruction sets with dense syllables. The first machine in the family was the B5000 in 1961, which was optimized for compiling ALGOL 60 programs extremely well, using single-pass compilers. The B5000 evolved into the B5500 and the B5700. Subsequent major redesigns include the B6500/B6700 line and its successors, as well as the separate B8500 line.

A system programming language is a programming language used for system programming; such languages are designed for writing system software, which usually requires different development approaches when compared with application software. Edsger Dijkstra refers to these languages as machine oriented high order languages, or mohol.

In computer science, a union is a value that may have any of several representations or formats within the same position in memory; that consists of a variable that may hold such a data structure. Some programming languages support special data types, called union types, to describe such values and variables. In other words, a union type definition will specify which of a number of permitted primitive types may be stored in its instances, e.g., "float or long integer". In contrast with a record, which could be defined to contain both a float and an integer; in a union, there is only one value at any given time.

The PL/M programming language (an acronym of Programming Language for Microcomputers) is a high-level language conceived and developed by Gary Kildall in 1973 for Hank Smith at Intel for its microprocessors.

XPL, for expert's programming language is a programming language based on PL/I, a portable one-pass compiler written in its own language, and a parser generator tool for easily implementing similar compilers for other languages. XPL was designed in 1967 as a way to teach compiler design principles and as starting point for students to build compilers for their own languages.

Loop unrolling, also known as loop unwinding, is a loop transformation technique that attempts to optimize a program's execution speed at the expense of its binary size, which is an approach known as space–time tradeoff. The transformation can be undertaken manually by the programmer or by an optimizing compiler. On modern processors, loop unrolling is often counterproductive, as the increased code size can cause more cache misses; cf. Duff's device.

The Burroughs B2500 through Burroughs B4900 was a series of mainframe computers developed and manufactured by Burroughs Corporation in Pasadena, California, United States, from 1966 to 1991. They were aimed at the business world with an instruction set optimized for the COBOL programming language. They were also known as Burroughs Medium Systems, by contrast with the Burroughs Large Systems and Burroughs Small Systems.

In computer architecture, 128-bit integers, memory addresses, or other data units are those that are 128 bits wide. Also, 128-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size.

Systems Programming Language, often shortened to SPL but sometimes known as SPL/3000, was a procedurally-oriented programming language written by Hewlett-Packard for the HP 3000 minicomputer line and first introduced in 1972. SPL was used to write the HP 3000's primary operating system, Multi-Programming Executive (MPE). Similar languages on other platforms were generically referred to as system programming languages, confusing matters.

<span class="mw-page-title-main">TI-990</span> Series of 16-bit computers by Texas Instruments.

The TI-990 was a series of 16-bit minicomputers sold by Texas Instruments (TI) in the 1970s and 1980s. The TI-990 was a replacement for TI's earlier minicomputer systems, the TI-960 and the TI-980. It had several unique features, and was easier to program than its predecessors.

<span class="mw-page-title-main">History of compiler construction</span>

In computing, a compiler is a computer program that transforms source code written in a programming language or computer language, into another computer language. The most common reason for transforming source code is to create an executable program.

<span class="mw-page-title-main">IBM System/360 Model 20</span> Low-end IBM computer model from 1960s

The IBM System/360 Model 20 is the smallest member of the IBM System/360 family announced in November 1964. The Model 20 supports only a subset of the System/360 instruction set, with binary numbers limited to 16 bits and no floating point. In later years it would have been classified as a 16-bit minicomputer rather than a mainframe, but the term "minicomputer" was not current, and in any case IBM wanted to emphasize the compatibility of the Model 20 rather than its differences from the rest of the System/360 line. It does, however, have the full System/360 decimal instruction set, that allows for addition, subtraction, product, and dividend of up to 31 decimal digits.

References

  1. 1 2 Wirth, Niklaus (January 1968). "PL360, a Programming Language for the 360 Computers". Journal of the ACM. 15 (1): 34–74. doi: 10.1145/321439.321442 . S2CID   7376057.
  2. Wirth, Niklaus (December 24, 1965). A Programming Language for the 360 Computers (PDF) (Technical report). Stanford University. CS33.
  3. Satterthwaite, E. (March 1968). "Notes on Construction of Subsystems within Operating System/360" (PDF). p. 1. CGTM #43.