In computing, aspect-oriented programming (AOP) is a programming paradigm that aims to increase modularity by allowing the separation of cross-cutting concerns. It does so by adding behavior to existing code (an advice) without modifying the code, instead separately specifying which code is modified via a "pointcut" specification, such as "log all function calls when the function's name begins with 'set'". This allows behaviors that are not central to the business logic (such as logging) to be added to a program without cluttering the code of core functions.
AOP includes programming methods and tools that support the modularization of concerns at the level of the source code, while aspect-oriented software development refers to a whole engineering discipline.
Aspect-oriented programming entails breaking down program logic into cohesive areas of functionality (so-called concerns). Nearly all programming paradigms support some level of grouping and encapsulation of concerns into separate, independent entities by providing abstractions (e.g., functions, procedures, modules, classes, methods) that can be used for implementing, abstracting, and composing these concerns. Some concerns "cut across" multiple abstractions in a program, and defy these forms of implementation. These concerns are called cross-cutting concerns or horizontal concerns.
Logging exemplifies a cross-cutting concern because a logging strategy must affect every logged part of the system. Logging thereby crosscuts all logged classes and methods.
All AOP implementations have some cross-cutting expressions that encapsulate each concern in one place. The difference between implementations lies in the power, safety, and usability of the constructs provided. For example, interceptors that specify the methods to express a limited form of cross-cutting, without much support for type-safety or debugging. AspectJ has a number of such expressions and encapsulates them in a special class, called an aspect. For example, an aspect can alter the behavior of the base code (the non-aspect part of a program) by applying advice (additional behavior) at various join points (points in a program) specified in a quantification or query called a pointcut (that detects whether a given join point matches). An aspect can also make binary-compatible structural changes to other classes, such as adding members or parents.
AOP has several direct antecedents A1 and A2: [1] reflection and metaobject protocols, subject-oriented programming, Composition Filters, and Adaptive Programming. [2]
Gregor Kiczales and colleagues at Xerox PARC developed the explicit concept of AOP and followed this with the AspectJ AOP extension to Java. IBM's research team pursued a tool approach over a language design approach and in 2001 proposed Hyper/J and the Concern Manipulation Environment, which have not seen wide use.
The examples in this article use AspectJ.
The Microsoft Transaction Server is considered to be the first major application of AOP followed by Enterprise JavaBeans. [3] [4]
Typically, an aspect is scattered or tangled as code, making it harder to understand and maintain. It is scattered by the function (such as logging) being spread over a number of unrelated functions that might use its function, possibly in entirely unrelated systems or written in different languages. Thus, changing logging can require modifying all affected modules. Aspects become tangled not only with the mainline function of the systems in which they are expressed but also with each other. Changing one concern thus entails understanding all the tangled concerns or having some means by which the effect of changes can be inferred.
For example, consider a banking application with a conceptually very simple method for transferring an amount from one account to another: [5]
voidtransfer(AccountfromAcc,AccounttoAcc,intamount)throwsException{if(fromAcc.getBalance()<amount)thrownewInsufficientFundsException();fromAcc.withdraw(amount);toAcc.deposit(amount);}
However, this transfer method overlooks certain considerations that a deployed application would require, such as verifying that the current user is authorized to perform this operation, encapsulating database transactions to prevent accidental data loss, and logging the operation for diagnostic purposes.
A version with all those new concerns might look like this:
voidtransfer(AccountfromAcc,AccounttoAcc,intamount,Useruser,Loggerlogger,Databasedatabase)throwsException{logger.info("Transferring money...");if(!isUserAuthorised(user,fromAcc)){logger.info("User has no permission.");thrownewUnauthorisedUserException();}if(fromAcc.getBalance()<amount){logger.info("Insufficient funds.");thrownewInsufficientFundsException();}fromAcc.withdraw(amount);toAcc.deposit(amount);database.commitChanges();// Atomic operation.logger.info("Transaction successful.");}
In this example, other interests have become tangled with the basic functionality (sometimes called the business logic concern). Transactions, security, and logging all exemplify cross-cutting concerns .
Now consider what would happen if we suddenly need to change the security considerations for the application. In the program's current version, security-related operations appear scattered across numerous methods, and such a change would require major effort.
AOP tries to solve this problem by allowing the programmer to express cross-cutting concerns in stand-alone modules called aspects. Aspects can contain advice (code joined to specified points in the program) and inter-type declarations (structural members added to other classes). For example, a security module can include advice that performs a security check before accessing a bank account. The pointcut defines the times (join points) when one can access a bank account, and the code in the advice body defines how the security check is implemented. That way, both the check and the places can be maintained in one place. Further, a good pointcut can anticipate later program changes, so if another developer creates a new method to access the bank account, the advice will apply to the new method when it executes.
So for the example above implementing logging in an aspect:
aspectLogger{voidBank.transfer(AccountfromAcc,AccounttoAcc,intamount,Useruser,Loggerlogger){logger.info("Transferring money...");}voidBank.getMoneyBack(Useruser,inttransactionId,Loggerlogger){logger.info("User requested money back.");}// Other crosscutting code.}
One can think of AOP as a debugging tool or a user-level tool. Advice should be reserved for cases in which one cannot get the function changed (user level) [6] or do not want to change the function in production code (debugging).
The advice-related component of an aspect-oriented language defines a join point model (JPM). A JPM defines three things:
Join-point models can be compared based on the join points exposed, how join points are specified, the operations permitted at the join points, and the structural enhancements that can be expressed.
execution(*set*(*))
This pointcut matches a method-execution join point, if the method name starts with "set
" and there is exactly one argument of any type.
"Dynamic" PCDs check runtime types and bind variables. For example,
this(Point)
This pointcut matches when the currently executing object is an instance of class Point
. Note that the unqualified name of a class can be used via Java's normal type lookup.
"Scope" PCDs limit the lexical scope of the join point. For example:
within(com.company.*)
This pointcut matches any join point in any type in the com.company
package. The *
is one form of the wildcards that can be used to match many things with one signature.
Pointcuts can be composed and named for reuse. For example:
pointcutset():execution(*set*(*))&&this(Point)&&within(com.company.*);
set
" and this
is an instance of type Point
in the com.company
package. It can be referred to using the name "set()
".after():set(){Display.update();}
set()
pointcut matches the join point, run the code Display.update()
after the join point completes."There are other kinds of JPMs. All advice languages can be defined in terms of their JPM. For example, a hypothetical aspect language for UML may have the following JPM:
Inter-type declarations provide a way to express cross-cutting concerns affecting the structure of modules. Also known as open classes and extension methods , this enables programmers to declare in one place members or parents of another class, typically to combine all the code related to a concern in one aspect. For example, if a programmer implemented the cross-cutting display-update concern using visitors, an inter-type declaration using the visitor pattern might look like this in AspectJ:
aspectDisplayUpdate{voidPoint.acceptVisitor(Visitorv){v.visit(this);}// other crosscutting code...}
This code snippet adds the acceptVisitor
method to the Point
class.
Any structural additions are required to be compatible with the original class, so that clients of the existing class continue to operate, unless the AOP implementation can expect to control all clients at all times.
AOP programs can affect other programs in two different ways, depending on the underlying languages and environments:
The difficulty of changing environments means most implementations produce compatible combination programs through a type of program transformation known as weaving. An aspect weaver reads the aspect-oriented code and generates appropriate object-oriented code with the aspects integrated. The same AOP language can be implemented through a variety of weaving methods, so the semantics of a language should never be understood in terms of the weaving implementation. Only the speed of an implementation and its ease of deployment are affected by the method of combination used.
Systems can implement source-level weaving using preprocessors (as C++ was implemented originally in CFront) that require access to program source files. However, Java's well-defined binary form enables bytecode weavers to work with any Java program in .class-file form. Bytecode weavers can be deployed during the build process or, if the weave model is per-class, during class loading. AspectJ started with source-level weaving in 2001, delivered a per-class bytecode weaver in 2002, and offered advanced load-time support after the integration of AspectWerkz in 2005.
Any solution that combines programs at runtime must provide views that segregate them properly to maintain the programmer's segregated model. Java's bytecode support for multiple source files enables any debugger to step through a properly woven .class file in a source editor. However, some third-party decompilers cannot process woven code because they expect code produced by Javac rather than all supported bytecode forms (see also § Criticism, below).
Deploy-time weaving offers another approach. [7] This basically implies post-processing, but rather than patching the generated code, this weaving approach subclasses existing classes so that the modifications are introduced by method-overriding. The existing classes remain untouched, even at runtime, and all existing tools, such as debuggers and profilers, can be used during development. A similar approach has already proven itself in the implementation of many Java EE application servers, such as IBM's WebSphere.
Standard terminology used in Aspect-oriented programming may include:
Aspects emerged from object-oriented programming and reflective programming. AOP languages have functionality similar to, but more restricted than, metaobject protocols. Aspects relate closely to programming concepts like subjects, mixins, and delegation. Other ways to use aspect-oriented programming paradigms include Composition Filters and the hyperslices approach. Since at least the 1970s, developers have been using forms of interception and dispatch-patching that resemble some of the implementation methods for AOP, but these never had the semantics that the cross-cutting specifications provide in one place. [ citation needed ]
Designers have considered alternative ways to achieve separation of code, such as C#'s partial types, but such approaches lack a quantification mechanism that allows reaching several join points of the code with one declarative statement.[ citation needed ]
Though it may seem unrelated, in testing, the use of mocks or stubs requires the use of AOP techniques, such as around advice. Here the collaborating objects are for the purpose of the test, a cross-cutting concern. Thus, the various Mock Object frameworks provide these features. For example, a process invokes a service to get a balance amount. In the test of the process, it is unimportant where the amount comes from, but only that the process uses the balance according to the requirements.[ citation needed ]
Programmers need to be able to read and understand code to prevent errors. [10] Even with proper education, understanding cross-cutting concerns can be difficult without proper support for visualizing both static structure and the dynamic flow of a program. [11] Starting in 2002, AspectJ began to provide IDE plug-ins to support the visualizing of cross-cutting concerns. Those features, as well as aspect code assist and refactoring, are now common.
Given the power of AOP, making a logical mistake in expressing cross-cutting can lead to widespread program failure. Conversely, another programmer may change the join points in a program, such as by renaming or moving methods, in ways that the aspect writer did not anticipate and with unforeseen consequences. One advantage of modularizing cross-cutting concerns is enabling one programmer to easily affect the entire system. As a result, such problems manifest as a conflict over responsibility between two or more developers for a given failure. AOP can expedite solving these problems, as only the aspect must be changed. Without AOP, the corresponding problems can be much more spread out.[ citation needed ]
The most basic criticism of the effect of AOP is that control flow is obscured, and that it is not only worse than the much-maligned GOTO statement, but is closely analogous to the joke COME FROM statement. [11] The obliviousness of application, which is fundamental to many definitions of AOP (the code in question has no indication that an advice will be applied, which is specified instead in the pointcut), means that the advice is not visible, in contrast to an explicit method call. [11] [12] For example, compare the COME FROM program: [11]
5INPUTX10PRINT'Result is :'15PRINTX20COMEFROM1025X=X*X30RETURN
with an AOP fragment with analogous semantics:
main(){inputxprint(result(x))}inputresult(intx){returnx}around(intx):call(result(int))&&args(x){inttemp=proceed(x)returntemp*temp}
Indeed, the pointcut may depend on runtime condition and thus not be statically deterministic. This can be mitigated but not solved by static analysis and IDE support showing which advices potentially match.
General criticisms are that AOP purports to improve "both modularity and the structure of code", but some counter that it instead undermines these goals and impedes "independent development and understandability of programs". [13] Specifically, quantification by pointcuts breaks modularity: "one must, in general, have whole-program knowledge to reason about the dynamic execution of an aspect-oriented program." [14] Further, while its goals (modularizing cross-cutting concerns) are well understood, its actual definition is unclear and not clearly distinguished from other well-established techniques. [13] Cross-cutting concerns potentially cross-cut each other, requiring some resolution mechanism, such as ordering. [13] Indeed, aspects can apply to themselves, leading to problems such as the liar paradox. [15]
Technical criticisms include that the quantification of pointcuts (defining where advices are executed) is "extremely sensitive to changes in the program", which is known as the fragile pointcut problem. [13] The problems with pointcuts are deemed intractable. If one replaces the quantification of pointcuts with explicit annotations, one obtains attribute-oriented programming instead, which is simply an explicit subroutine call and suffers the identical problem of scattering, which AOP was designed to solve. [13]
Many programming languages have implemented AOP, within the language, or as an external library, including:
{{cite web}}
: CS1 maint: archived copy as title (link){{cite web}}
: CS1 maint: bot: original URL status unknown (link){{cite journal}}
: Cite journal requires |journal=
(help)In object-oriented programming, a class defines the shared aspects of objects created from the class. The capabilities of a class differ between programming languages, but generally the shared aspects consist of state (variables) and behavior (methods) that are each either associated with an particular object or with all objects of that class.
JavaScript, often abbreviated as JS, is a programming language and core technology of the Web, alongside HTML and CSS. 99% of websites use JavaScript on the client side for webpage behavior.
A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as programs written in other languages that are also compiled to Java bytecode. The JVM is detailed by a specification that formally describes what is required in a JVM implementation. Having a specification ensures interoperability of Java programs across different implementations so that program authors using the Java Development Kit (JDK) need not worry about idiosyncrasies of the underlying hardware platform.
In computer science, separation of concerns is a design principle for separating a computer program into distinct sections. Each section addresses a separate concern, a set of information that affects the code of a computer program. A concern can be as general as "the details of the hardware for an application", or as specific as "the name of which class to instantiate". A program that embodies SoC well is called a modular program. Modularity, and hence separation of concerns, is achieved by encapsulating information inside a section of code that has a well-defined interface. Encapsulation is a means of information hiding. Layered designs in information systems are another embodiment of separation of concerns.
In aspect-oriented programming, a pointcut is a set of join points. Pointcut specifies where exactly to apply advice, which allows separation of concerns and helps in modularizing business logic. Pointcuts are often specified using class names or method names, in some cases using regular expressions that match class or method name. Different frameworks support different Pointcut expressions; AspectJ syntax is considered as de facto standard. Frameworks are available for various programming languages like Java, Perl, Ruby, and many more which support pointcut.
AspectJ is an aspect-oriented programming (AOP) extension for the Java programming language, created at PARC. It is available in Eclipse Foundation open-source projects, both stand-alone and integrated into Eclipse. AspectJ has become a widely used de facto standard for AOP by emphasizing simplicity and usability for end users. It uses Java-like syntax, and included IDE integrations for displaying crosscutting structure since its initial public release in 2001.
GNU Classpath is a free software implementation of the standard class library for the Java programming language. Most classes from J2SE 1.4 and 5.0 are implemented. Classpath can thus be used to run Java-based applications. GNU Classpath is a part of the GNU Project. It was originally developed in parallel with libgcj due to license incompatibilities, but later the two projects merged.
In computer programming, an aspect of a program is a feature linked to many other parts of the program, but is not related to the program's primary function. An aspect crosscuts the program's core concerns, therefore violating its separation of concerns that tries to encapsulate unrelated functions. For example, logging code can crosscut many modules, yet the aspect of logging should be separate from the functional concerns of the module it cross-cuts. Isolating such aspects as logging and persistence from business logic is at the core of the aspect-oriented programming (AOP) paradigm.
In aspect-oriented software development, cross-cutting concerns are aspects of a program that affect several modules, without the possibility of being encapsulated in any of them. These concerns often cannot be cleanly decomposed from the rest of the system in both the design and implementation, and can result in either scattering, tangling, or both.
In software engineering, dependency injection is a programming technique in which an object or function receives other objects or functions that it requires, as opposed to creating them internally. Dependency injection aims to separate the concerns of constructing objects and using them, leading to loosely coupled programs. The pattern ensures that an object or function that wants to use a given service should not have to know how to construct those services. Instead, the receiving 'client' is provided with its dependencies by external code, which it is not aware of. Dependency injection makes implicit dependencies explicit and helps solve the following problems:
In software engineering, a plain old Java object (POJO) is an ordinary Java object, not bound by any special restriction. The term was coined by Martin Fowler, Rebecca Parsons and Josh MacKenzie in September 2000:
"We wondered why people were so against using regular objects in their systems and concluded that it was because simple objects lacked a fancy name. So we gave them one, and it's caught on very nicely."
In computer programming, a trait is a language concept that represents a set of methods that can be used to extend the functionality of a class.
The Spring Framework is an application framework and inversion of control container for the Java platform. The framework's core features can be used by any Java application, but there are extensions for building web applications on top of the Java EE platform. The framework does not impose any specific programming model.. The framework has become popular in the Java community as an addition to the Enterprise JavaBeans (EJB) model. The Spring Framework is free and open source software.
AspectC++ is an aspect-oriented extension of C and C++ languages. It has a source-to-source compiler, which translates AspectC++ source code into compilable C++. The compiler is available under the GNU GPL, though some extensions specific to Microsoft Windows are only available through pure-systems GmbH.
e is a hardware verification language (HVL) which is tailored to implementing highly flexible and reusable verification testbenches.
In computing, subject-oriented programming is an object-oriented software paradigm in which the state (fields) and behavior (methods) of objects are not seen as intrinsic to the objects themselves, but are provided by various subjective perceptions ("subjects") of the objects. The term and concepts were first published in September 1993 in a conference paper which was later recognized as being one of the three most influential papers to be presented at the conference between 1986 and 1996. As illustrated in that paper, an analogy is made with the contrast between the philosophical views of Plato and Kant with respect to the characteristics of "real" objects, but applied to software ones. For example, while we may all perceive a tree as having a measurable height, weight, leaf-mass, etc., from the point of view of a bird, a tree may also have measures of relative value for food or nesting purposes, or from the point of view of a tax-assessor, it may have a certain taxable value in a given year. Neither the bird's nor the tax-assessor's additional state information need be seen as intrinsic to the tree, but are added by the perceptions of the bird and tax-assessor, and from Kant's analysis, the same may be true even of characteristics we think of as intrinsic.
Data, context, and interaction (DCI) is a paradigm used in computer software to program systems of communicating objects. Its goals are:
An aspect weaver is a metaprogramming utility for aspect-oriented languages designed to take instructions specified by aspects and generate the final implementation code. The weaver integrates aspects into the locations specified by the software as a pre-compilation step. By merging aspects and classes, the weaver generates a woven class.
Agent-oriented programming (AOP) is a programming paradigm where the construction of the software is centered on the concept of software agents. In contrast to object-oriented programming which has objects at its core, AOP has externally specified agents at its core. They can be thought of as abstractions of objects. Exchanged messages are interpreted by receiving "agents", in a way specific to its class of agents.
Aspect-Oriented Programming (AOP) presents the principle of the separation of concerns, allowing less interdependence, and more transparency. Thereby, an aspect is a module that encapsulates a crosscutting concern, and it is composed of pointcuts and advice bodies. The interception of an aspect is performed in a join point, and defined inside a pointcut. Whenever the application execution reaches one pointcut, an advice associated with it is executed. However, this implementation does not take into account separation of concerns in distributed settings.