This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Paradigm | aspect-oriented |
---|---|
Developer | Eclipse Foundation |
First appeared | 2001 |
Stable release | |
Implementation language | Java |
OS | Cross-platform |
License | Eclipse Public License |
Filename extensions | aj |
Website | www |
Major implementations | |
The AspectJ Development Tools for Eclipse |
AspectJ is an aspect-oriented programming (AOP) extension for the Java programming language, created at PARC. It is available in Eclipse Foundation open-source projects, both stand-alone and integrated into Eclipse. AspectJ has become a widely used de facto standard for AOP by emphasizing simplicity and usability for end users. It uses Java-like syntax, and included IDE integrations for displaying crosscutting structure since its initial public release in 2001.
All valid Java programs are also valid AspectJ programs, but AspectJ lets programmers define special constructs called aspects . Aspects can contain several entities unavailable to standard classes. These are:
acceptVisitor
(see visitor pattern) method to the Point
class:aspectVisitAspect{voidPoint.acceptVisitor(Visitorv){v.visit(this);}}
Point
whose name begins with set
:pointcutset():execution(*set*(..))&&this(Point);
Point
is set, using the pointcut declared above:after():set(){Display.update();}
AspectJ also supports limited forms of pointcut-based static checking and aspect reuse (by inheritance). See the AspectJ Programming Guide for a more detailed description of the language.
AspectJ can be implemented in many ways, including source-weaving or bytecode-weaving, and directly in the virtual machine (VM). In all cases, the AspectJ program becomes a valid Java program that runs in a Java VM. Classes affected by aspects are binary-compatible with unaffected classes (to remain compatible with classes compiled with the unaffected originals). Supporting multiple implementations allows the language to grow as technology changes, and being Java-compatible ensures platform availability.
Key to its success has been engineering and language decisions that make the language usable and programs deployable. The original Xerox AspectJ implementation used source weaving, which required access to source code. When Xerox contributed the code to Eclipse, AspectJ was reimplemented using the Eclipse Java compiler and a bytecode weaver based on BCEL, so developers could write aspects for code in binary (.class) form. At this time the AspectJ language was restricted to support a per-class model essential for incremental compilation and load-time weaving. This made IDE integrations as responsive as their Java counterparts, and it let developers deploy aspects without altering the build process. This led to increased adoption, as AspectJ became usable for impatient Java programmers and enterprise-level deployments. Since then, the Eclipse team has increased performance and correctness, upgraded the AspectJ language to support Java 5 language features like generics and annotations, and integrated annotation-style pure-java aspects from AspectWerkz.
The Eclipse project supports both command-line and Ant interfaces. A related Eclipse project has steadily improved the Eclipse IDE support for AspectJ (called AspectJ Development Tools (AJDT)) and other providers of crosscutting structure. IDE support for emacs, NetBeans, and JBuilder foundered when Xerox put them into open source, but support for Oracle's JDeveloper did appear. IDE support has been key to Java programmers using AspectJ and understanding crosscutting concerns.
BEA has offered limited VM support for aspect-oriented extensions, but for extensions supported in all Java VM's would require agreement through Sun's Java Community Process (see also the java.lang.instrument package available since Java SE 5 — which is a common ground for JVM load-time instrumentation).
Academic interest in the semantics and implementation of aspect-oriented languages has surrounded AspectJ since its release. The leading research implementation of AspectJ is the AspectBench Compiler, or abc; it supports extensions for changing the syntax and semantics of the language and forms the basis for many AOP experiments that the AspectJ team can no longer support, given its broad user base.
Many programmers discover AspectJ as an enabling technology for other projects, most notably Spring AOP. A sister Spring project, Spring Roo, automatically maintains AspectJ inter-type declarations as its principal code generation output.
Gregor Kiczales started and led the Xerox PARC team that eventually developed AspectJ. He coined the term crosscutting. Fourth on the team, Chris Maeda coined the term aspect-oriented programming. Jim Hugunin and Erik Hilsdale (Xerox PARC team members 12 and 13) were the original compiler and weaver engineers, Mik Kersten implemented the IDE integration and started the Eclipse AJDT project with Adrian Colyer and Andrew Clement. After Adrian Colyer, Andrew Clement took over as project lead and main contributor for AspectJ. AJDT has since been retired as a separate project and taken over into the Eclipse AspectJ umbrella project to streamline maintenance. However, both AspectJ and AJDT are still maintained in separate source repositories.
In 2021, Alexander Kriegisch joined the project, first as a contributor, then as a committer and maintainer. Since March 2021, he is basically the sole maintainer. Since 2024, he also is formally the AspectJ and AJDT project lead.
The AspectBench Compiler was developed and is maintained as a joint effort of the Programming Tools Group at the Oxford University Computing Laboratory, the Sable Research Group at McGill University, and the Institute for Basic Research in Computer Science (BRICS).
AspectWerkz was a dynamic, lightweight and high-performance AOP/AOSD framework for Java. It has been merged with the AspectJ project, [2] which supports AspectWerkz functionality since AspectJ 5.
Jonas Boner and Alex Vasseur engineered the AspectWerkz project, and later contributed to the AspectJ project when it merged in the AspectWerkz annotation style and load-time weaving support.
Unlike AspectJ prior to version 5, AspectWerkz did not add any new language constructs to Java, but instead supported declaration of aspects within Java annotations. It utilizes bytecode modification to weave classes at project build-time, class load time, as well as runtime. It uses standardized JVM level APIs[ clarify ]. Aspects can be defined using either Java annotations (introduced with Java 5), Java 1.3/1.4 custom doclet or a simple XML definition file.
AspectWerkz provides an API to use the very same aspects for proxies, hence providing a transparent experience, allowing a smooth transition for users familiar with proxies.
AspectWerkz is free software. The LGPL-style license allows the use of AspectWerkz 2.0 in both commercial and open source projects.
Java is a high-level, class-based, object-oriented programming language that is designed to have as few implementation dependencies as possible. It is a general-purpose programming language intended to let programmers write once, run anywhere (WORA), meaning that compiled Java code can run on all platforms that support Java without the need to recompile. Java applications are typically compiled to bytecode that can run on any Java virtual machine (JVM) regardless of the underlying computer architecture. The syntax of Java is similar to C and C++, but has fewer low-level facilities than either of them. The Java runtime provides dynamic capabilities that are typically not available in traditional compiled languages.
A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as programs written in other languages that are also compiled to Java bytecode. The JVM is detailed by a specification that formally describes what is required in a JVM implementation. Having a specification ensures interoperability of Java programs across different implementations so that program authors using the Java Development Kit (JDK) need not worry about idiosyncrasies of the underlying hardware platform.
In computing, aspect-oriented programming (AOP) is a programming paradigm that aims to increase modularity by allowing the separation of cross-cutting concerns. It does so by adding behavior to existing code without modifying the code, instead separately specifying which code is modified via a "pointcut" specification, such as "log all function calls when the function's name begins with 'set'". This allows behaviors that are not central to the business logic to be added to a program without cluttering the code of core functions.
The GNU Compiler for Java (GCJ) is a discontinued free compiler for the Java programming language. It was part of the GNU Compiler Collection.
In aspect-oriented programming, a pointcut is a set of join points. Pointcut specifies where exactly to apply advice, which allows separation of concerns and helps in modularizing business logic. Pointcuts are often specified using class names or method names, in some cases using regular expressions that match class or method name. Different frameworks support different Pointcut expressions; AspectJ syntax is considered as de facto standard. Frameworks are available for various programming languages like Java, Perl, Ruby, and many more which support pointcut.
SableVM was a clean room implementation of Java bytecode interpreter implementing the Java virtual machine (VM) specification, second edition. SableVM was designed to be a robust, extremely portable, efficient, and fully specifications-compliant Java Virtual Machine that would be easy to maintain and to extend. It is now no longer being maintained.
GNU Classpath is a free software implementation of the standard class library for the Java programming language. Most classes from J2SE 1.4 and 5.0 are implemented. Classpath can thus be used to run Java-based applications. GNU Classpath is a part of the GNU Project. It was originally developed in parallel with libgcj due to license incompatibilities, but later the two projects merged.
Apache Groovy is a Java-syntax-compatible object-oriented programming language for the Java platform. It is both a static and dynamic language with features similar to those of Python, Ruby, and Smalltalk. It can be used as both a programming language and a scripting language for the Java Platform, is compiled to Java virtual machine (JVM) bytecode, and interoperates seamlessly with other Java code and libraries. Groovy uses a curly-bracket syntax similar to Java's. Groovy supports closures, multiline strings, and expressions embedded in strings. Much of Groovy's power lies in its AST transformations, triggered through annotations.
Jikes Research Virtual Machine is a mature virtual machine that runs programs written for the Java platform. Unlike most other Java virtual machines (JVMs), it is written in the programming language Java, in a style of implementation termed meta-circular. It is free and open source software released under an Eclipse Public License.
Javassist is a Java library providing a means to manipulate the Java bytecode of an application. In this sense Javassist provides the support for structural reflection, i.e., the ability to change the implementation of a class at runtime.
Google Web Toolkit, or GWT Web Toolkit, is an open-source set of tools that allows web developers to create and maintain JavaScript front-end applications in Java. It is licensed under Apache License 2.0.
The Spring Framework is an application framework and inversion of control container for the Java platform. The framework's core features can be used by any Java application, but there are extensions for building web applications on top of the Java EE platform. The framework does not impose any specific programming model.. The framework has become popular in the Java community as an addition to the Enterprise JavaBeans (EJB) model. The Spring Framework is free and open source software.
The ASM library is a project of the OW2 consortium. It provides a simple API for decomposing, modifying, and recomposing binary Java classes. The project was originally conceived and developed by Eric Bruneton. ASM is Java-centric at present, and does not currently have a backend that exposes other bytecode implementations.
Eclipse OpenJ9 is a high performance, scalable, Java virtual machine (JVM) implementation that is fully compliant with the Java Virtual Machine Specification.
Spring Roo is an open-source software tool that uses convention-over-configuration principles to provide rapid application development of Java-based enterprise software. The resulting applications use common Java technologies such as Spring Framework, Java Persistence API, Thymeleaf, Apache Maven and AspectJ. Spring Roo is a member of the Spring portfolio of projects.
An aspect weaver is a metaprogramming utility for aspect-oriented languages designed to take instructions specified by aspects and generate the final implementation code. The weaver integrates aspects into the locations specified by the software as a pre-compilation step. By merging aspects and classes, the weaver generates a woven class.
Java bytecode is the instruction set of the Java virtual machine (JVM), crucial for executing programs written in the Java language and other JVM-compatible languages. Each bytecode operation in the JVM is represented by a single byte, hence the name "bytecode", making it a compact form of instruction. This intermediate form enables Java programs to be platform-independent, as they are compiled not to native machine code but to a universally executable format across different JVM implementations.