Project Boreas was a study conducted between 2003 and 2006 by the British Interplanetary Society to design a station on the Planum Boreum at the Martian North Pole. [1] The project was international, involving over 25 scientists and engineers, co-ordinated by Charles S. Cockell. Pole Station was designed to operate for three summers and two polar winters. Amongst a diversity of scientific objectives the station occupants were to retrieve a deep core from within the Martian polar ice caps and search for water and habitable conditions deep in the polar ice cap. Expeditions were planned to numerous locations across the Martian north polar caps, including the Chasma Boreale and the polar layered terrains. The study involved wide-ranging investigations of the scientific priorities for a human presence at the Martian polar ice caps through to detailed architectural and design studies for the station. Studies were undertaken on mobility and communications and psycho-social issues for long-term operation at the Martian polar station.
Project Boreas was named for the Greek god of the North Wind. Concepts for polar bases had been discussed in earlier papers [2] [3] The station was designed with the assumption that it would be occupied by 10 people. Although the station could be constructed at any time, the study used a timeframe of 2037 to 2042 to provide a backdrop for the design. It is likely that in the coming decades robots will explore the Martian polar caps, which were first observed by Italian astronomer, Giovanni Cassini in 1666. Project Boreas considered long-term human polar exploration on Mars.
The crew of the station were envisaged to carry out diverse scientific studies in geology, geophysics, climatology, and astrobiology. One particular advantage of humans was perceived to be their ability to run a laboratory in which complex and analytical tasks can be undertaken in polar science and exploration. The design study considered that the retrieval of a core into the polar ice cap would be one of the primary objectives of Pole Station. The core would be used to study past geological and climatological changes, including dating past Martian dust storms. The core would also be used to investigate the nature of the polar layered terrains. It would be used to study whether the ice caps contained a record of organics on Mars, to search for habitats in the ice and to study questions on the past and present habitability of Martian polar ices. The occupants also had diverse climatology objectives to undertake. The study considered Martian polar astronomy to be a potentially useful additional activity for the station crew members.
During the 1173 sol-stay on the Martian surface the crew would carry out a number of expeditions across the polar ice cap. Expeditions to the Chasma Boreale and along the polar spiral valleys were considered in detail. The study also considered the possibility of exploratory mid-winter expeditions across the polar ice cap. These expeditions would be supported by pressurised and unpressurised rovers. Trafficability issues of trans-polar expeditions were considered.
The study carried out a trade off analysis of power, thermal control and other parameters to provide a basis for the architectural design. The station would be constructed from six linked modules of 3.5 m diameter with a smaller cache module. The modules included a galley area, science and human factors laboratories, EVA preparation area and personal quarters. The station would have a ‘garden’ area to provide some fresh food and for psychological relief. The station would be supported by nuclear power and a hybrid physico-chemical and biological life support system. Provision for in-situ resource use (ISRU) from the Martian polar regions was studied, particular emphasis being placed on the availability of water from the polar ices. The station would support a separate small drilling encampment nearby and would be surrounded by radiative panels which would sublime the 2 m of carbon dioxide snow estimated to fall at Pole Station during the winter, allowing for year-round operations.
Project Boreas considered the use of bioinspired robots to support Pole Station. ‘Arctic fox’, ‘Arctic hare’, ‘snow bunting’ (a flying robot) and ‘lemmings’ would support science and exploration objectives from Pole Station by enabling remotely controlled data collection at many spatial scales either from the rovers or from the station. The design study investigated communications for Pole Station and satellite requirements for sustaining base to field communications. The unique psycho-social issues associated with the long and permanently dark Martian polar winter were addressed. Medical requirements for long-term operation at the Martian polar ice caps were investigated in addition to the nutrition requirements, which were used to constrain the life support system design.
The Project Boreas report was shortlisted for the 2007 Sir Arthur Clarke Award in the category of "Best Written Presentation".
Mars Express is a space exploration mission being conducted by the European Space Agency (ESA). The Mars Express mission is exploring the planet Mars, and is the first planetary mission attempted by the agency. "Express" originally referred to the speed and efficiency with which the spacecraft was designed and built. However, "Express" also describes the spacecraft's relatively short interplanetary voyage, a result of being launched when the orbits of Earth and Mars brought them closer than they had been in about 60,000 years.
The Mars Polar Lander, also known as the Mars Surveyor '98 Lander, was a 290-kilogram robotic spacecraft lander launched by NASA on January 3, 1999, to study the soil and climate of Planum Australe, a region near the south pole on Mars. It formed part of the Mars Surveyor '98 mission. On December 3, 1999, however, after the descent phase was expected to be complete, the lander failed to reestablish communication with Earth. A post-mortem analysis determined the most likely cause of the mishap was premature termination of the engine firing prior to the lander touching the surface, causing it to strike the planet at a high velocity.
The planet Mars has been explored remotely by spacecraft. Probes sent from Earth, beginning in the late 20th century, have yielded a large increase in knowledge about the Martian system, focused primarily on understanding its geology and habitability potential. Engineering interplanetary journeys is complicated and the exploration of Mars has experienced a high failure rate, especially the early attempts. Roughly sixty percent of all spacecraft destined for Mars failed before completing their missions and some failed before their observations could begin. Some missions have met with unexpected success, such as the twin Mars Exploration Rovers, Spirit and Opportunity which operated for years beyond their specification.
Mars 96 was a failed Mars mission launched in 1996 to investigate Mars by the Russian Space Forces and not directly related to the Soviet Mars probe program of the same name. After failure of the second fourth-stage burn, the probe assembly re-entered the Earth's atmosphere, breaking up over a 320 km (200 mi) long portion of the Pacific Ocean, Chile, and Bolivia. The Mars 96 spacecraft was based on the Phobos probes launched to Mars in 1988. They were of a new design at the time and both ultimately failed. For the Mars 96 mission the designers believed they had corrected the flaws of the Phobos probes, but the value of their improvements was never demonstrated due to the destruction of the probe during the launch phase.
The British Interplanetary Society (BIS), founded in Liverpool in 1933 by Philip E. Cleator, is the oldest existing space advocacy organisation in the world. Its aim is exclusively to support and promote astronautics and space exploration.
TMK was the designation of a Soviet space exploration project to send a crewed flight to Mars and Venus without landing.
The Flashline Mars Arctic Research Station (FMARS) is the first of two simulated Mars habitats located on Devon Island, Nunavut, Canada, which is owned and operated by the Mars Society. The station is a member of the EU-INTERACT, circumarctic network of currently 89 terrestrial field bases located in northern Europe, Russia, US, Canada, Greenland, Iceland, the Faroe Islands, and Scotland as well as stations in northern alpine areas.
The Exploration Systems Architecture Study (ESAS) is the official title of a large-scale, system level study released by the National Aeronautics and Space Administration (NASA) in November 2005 of his goal of returning astronauts to the Moon and eventually Mars — known as the Vision for Space Exploration. The Constellation Program was cancelled in 2010 by the Obama Administration and replaced with the Space Launch System, later renamed as the Artemis Program in 2017 under the Trump Administration.
Planum Australe is the southern polar plain on Mars. It extends southward of roughly 75°S and is centered at 83.9°S 160.0°E. The geology of this region was to be explored by the failed NASA mission Mars Polar Lander, which lost contact on entry into the Martian atmosphere.
Planum Boreum is the northern polar plain on Mars. It extends northward from roughly 80°N and is centered at 88.0°N 15.0°E. Surrounding the high polar plain is a flat and featureless lowland plain called Vastitas Borealis which extends for approximately 1500 kilometres southwards, dominating the northern hemisphere.
Charles Cockell is a British astrobiologist who is professor of astrobiology in the School of Physics and Astronomy at the University of Edinburgh and co-director of the UK Centre for Astrobiology.
The Mare Boreum quadrangle is one of a series of 30 quadrangle maps of Mars used by the United States Geological Survey (USGS) Astrogeology Research Program. The Mare Boreum quadrangle is also referred to as MC-1. Its name derives from an older name for a feature that is now called Planum Boreum, a large plain surrounding the polar cap.
Chasma Boreale is a large canyon in Mars's north polar ice cap in the Mare Boreum quadrangle of Mars at 83° north latitude and 47.1° west longitude. It is about 560 km (350 mi) long and was named after a classical albedo feature name. The canyon's sides reveal layered features within the ice cap that result from seasonal melting and deposition of ice, together with dust deposits from Martian dust storms. Information about the past climate of Mars may eventually be revealed in these layers, just as tree ring patterns and ice core data do on Earth. Both polar caps also display grooved features, probably caused by wind flow patterns. The grooves are also influenced by the amount of dust. The more dust, the darker the surface. The darker the surface, the more melting as dark surfaces absorb more energy.
Outflow channels are extremely long, wide swathes of scoured ground on Mars. They extend many hundreds of kilometers in length and are typically greater than one kilometer in width. They are thought to have been carved by huge outburst floods.
Space architecture is the theory and practice of designing and building inhabited environments in outer space. This mission statement for space architecture was developed at the World Space Congress in Houston in 2002 by members of the Technical Aerospace Architecture Subcommittee of the American Institute of Aeronautics and Astronautics (AIAA). The architectural approach to spacecraft design addresses the total built environment. It is mainly based on the field of engineering, but also involves diverse disciplines such as physiology, psychology, and sociology.
The planet Mars has two permanent polar ice caps. During a pole's winter, it lies in continuous darkness, chilling the surface and causing the deposition of 25–30% of the atmosphere into slabs of CO2 ice (dry ice). When the poles are again exposed to sunlight, the frozen CO2 sublimes. These seasonal actions transport large amounts of dust and water vapor, giving rise to Earth-like frost and large cirrus clouds.
The Mars Geyser Hopper (MGH) was proposed in 2012 as a NASA design reference mission for a Discovery-class spacecraft concept that would investigate the springtime carbon dioxide Martian geysers found in regions around the south pole of Mars.
Hyperboreae Undae is one of the largest and densest dune fields of Planum Boreum, the Martian North Pole. It is named after one of the classical albedo features on Mars. Its name was officially approved by IAU in 1988. It extends from latitude 77.12°N to 82.8°N and from longitude 302.92°E to 316.02°E. Its centre is at latitude 79.96°N, longitude 49.49°W, and has a diameter of 463.65 kilometres (288.10 mi).
Abalos Colles is a stratified fragment of the Rupes Tenuis basal unit of Planum Boreum, located south of the Rupes Tenuis scarp and west of the Escorial crater. It contains 16 mounds. Abalos Colles is one of the named features in the vicinity of Planum Boreum, the Martian North pole. It is named after one of the classical albedo features on Mars located at latitude 72°N, longitude 70°W. Its name was officially approved by the International Astronomical Union (IAU) in 2003.
The International-Mars Ice Mapper (I-MIM) mission is a proposed Mars orbiter being developed by NASA in collaboration with the Japan Aerospace Exploration Agency (JAXA), the Canadian Space Agency (CSA), and the Italian Space Agency (ASI). As the mission concept evolves, there may be opportunities for other space agency and commercial partners to join the mission. The goal of the orbiter is the quantification of extent and volume of water ice in non-polar regions of Mars. The results are intended to support future Mars missions, especially with respect to the search for habitable environments and accessible In situ resource utilization (ISRU) resources. The International-Mars Ice Mapper is an "exploration precursor mission", comparing it to the Lunar Reconnaissance Orbiter (LRO) mission. The mission was envisioned to be launched as early as 2026. However, in March 2022, it was revealed in its fiscal year 2023 budget proposal that the US government would terminate NASA financial support for the Mars Ice Mapper, casting the project's future into uncertainty.