Project Highwater

Last updated
Launch of the first Highwater flight Saturn SA2 launch.jpg
Launch of the first Highwater flight

Project Highwater was an experiment carried out as part of two of the test flights of NASA's Saturn I launch vehicle (using battleship upper stages), successfully launched into a sub-orbital trajectory from Cape Canaveral, Florida. The Highwater experiment sought to determine the effect of a large volume of water suddenly released into the ionosphere. [1] [2] The project answered questions about the effect of the diffusion of propellants in the event that a rocket was destroyed at high altitude. [3]

Contents

The first flight, SA-2, took place on April 25, 1962. After the flight test of the rocket was complete and first stage shutdown occurred, explosive charges on the dummy upper stages destroyed the rocket and released 23,000 US gallons (87,000  L ) of ballast water weighing 95 short tons (86,000  kg ) into the upper atmosphere at an altitude of 65 miles (105 km), [4] eventually reaching an apex of 90 miles (145 km). [3]

The second flight, SA-3, launched on November 16, 1962, and involved the same payload. The ballast water was explosively released at the flight's peak altitude of 104 miles (167 km). [5] [6] For both of these experiments, the resulting ice clouds expanded to several miles in diameter and lightning-like radio disturbances were recorded. [3] [4]

See also

Related Research Articles

<span class="mw-page-title-main">Kennedy Space Center</span> United States space launch site in Florida

The John F. Kennedy Space Center, located on Merritt Island, Florida, is one of the National Aeronautics and Space Administration's (NASA) ten field centers. Since December 1968, KSC has been NASA's primary launch center of human spaceflight, research, and technology. Launch operations for the Apollo, Skylab and Space Shuttle programs were carried out from Kennedy Space Center Launch Complex 39 and managed by KSC. Located on the east coast of Florida, KSC is adjacent to Cape Canaveral Space Force Station (CCSFS). The management of the two entities work very closely together, share resources and operate facilities on each other's property.

<span class="mw-page-title-main">Marshall Space Flight Center</span> Rocketry and spacecraft propulsion research center

The George C. Marshall Space Flight Center (MSFC), located in Redstone Arsenal, Alabama, is the U.S. government's civilian rocketry and spacecraft propulsion research center. As the largest NASA center, MSFC's first mission was developing the Saturn launch vehicles for the Apollo program. Marshall has been the lead center for the Space Shuttle main propulsion and external tank; payloads and related crew training; International Space Station (ISS) design and assembly; computers, networks, and information management; and the Space Launch System. Located on the Redstone Arsenal near Huntsville, MSFC is named in honor of General of the Army George C. Marshall.

<span class="mw-page-title-main">Spaceport</span> Location used to launch and receive spacecraft

A spaceport or cosmodrome is a site for launching or receiving spacecraft, by analogy to a seaport for ships or an airport for aircraft. The word spaceport, and even more so cosmodrome, has traditionally been used for sites capable of launching spacecraft into orbit around Earth or on interplanetary trajectories. However, rocket launch sites for purely sub-orbital flights are sometimes called spaceports, as in recent years new and proposed sites for suborbital human flights have been frequently referred to or named "spaceports". Space stations and proposed future bases on the Moon are sometimes called spaceports, in particular if intended as a base for further journeys.

<span class="mw-page-title-main">Sounding rocket</span> Rocket designed to take measurements during its flight

A sounding rocket or rocketsonde, sometimes called a research rocket or a suborbital rocket, is an instrument-carrying rocket designed to take measurements and perform scientific experiments during its sub-orbital flight. The rockets are used to launch instruments from 48 to 145 km above the surface of the Earth, the altitude generally between weather balloons and satellites; the maximum altitude for balloons is about 40 km and the minimum for satellites is approximately 121 km. Certain sounding rockets have an apogee between 1,000 and 1,500 km, such as the Black Brant X and XII, which is the maximum apogee of their class. Sounding rockets often use military surplus rocket motors. NASA routinely flies the Terrier Mk 70 boosted Improved Orion, lifting 270–450-kg (600–1,000-pound) payloads into the exoatmospheric region between 97 and 201 km.

<span class="mw-page-title-main">Cape Canaveral Space Force Station</span> Military rocket launch site in Florida

Cape Canaveral Space Force Station (CCSFS) is an installation of the United States Space Force's Space Launch Delta 45, located on Cape Canaveral in Brevard County, Florida.

<span class="mw-page-title-main">Saturn I SA-1</span> 1961 mission in NASAs Apollo spaceflight program

Saturn-Apollo 1 (SA-1) was the first flight of the Saturn I space launch vehicle, the first in the Saturn family, and first mission of the American Apollo program. The rocket was launched on October 27, 1961, from Cape Canaveral, Florida.

<span class="mw-page-title-main">Saturn I SA-2</span> Second flight of the Saturn I launch vehicle, April 25, 1962

Saturn-Apollo 2 (SA-2) was the second flight of the Saturn I launch vehicle, the first flight of Project Highwater, and was part of the American Apollo program. The rocket was launched on April 25, 1962, from Cape Canaveral, Florida.

<span class="mw-page-title-main">Saturn I SA-3</span> Third flight of the Saturn I

Saturn-Apollo 3 (SA-3) was the third flight of the Saturn I launch vehicle, the second flight of Project Highwater, and part of the American Apollo program. The rocket was launched on November 16, 1962, from Cape Canaveral, Florida.

<span class="mw-page-title-main">Black Brant (rocket)</span> Family of Canadian-designed sounding rockets

The Black Brant is a family of Canadian-designed sounding rockets originally built by Bristol Aerospace, since absorbed by Magellan Aerospace in Winnipeg, Manitoba. Over 800 Black Brants of various versions have been launched since they were first produced in 1961, and the type remains one of the most popular sounding rockets. They have been repeatedly used by the Canadian Space Agency and NASA.

The Saturn I was a rocket designed as the United States' first medium lift launch vehicle for up to 20,000-pound (9,100 kg) low Earth orbit payloads. The rocket's first stage was built as a cluster of propellant tanks engineered from older rocket tank designs, leading critics to jokingly refer to it as "Cluster's Last Stand". Its development was taken over from the Advanced Research Projects Agency in 1958 by the newly formed civilian NASA. Its design proved sound and flexible. It was successful in initiating the development of liquid hydrogen-fueled rocket propulsion, launching the Pegasus satellites, and flight verification of the Apollo command and service module launch phase aerodynamics. Ten Saturn I rockets were flown before it was replaced by the heavy lift derivative Saturn IB, which used a larger, higher total impulse second stage and an improved guidance and control system. It also led the way to development of the super-heavy lift Saturn V which carried the first men to landings on the Moon in the Apollo program.

<span class="mw-page-title-main">RL10</span> Liquid fuel cryogenic rocket engine, typically used on rocket upper stages

The RL10 is a liquid-fuel cryogenic rocket engine built in the United States by Aerojet Rocketdyne that burns cryogenic liquid hydrogen and liquid oxygen propellants. Modern versions produce up to 110 kN (24,729 lbf) of thrust per engine in vacuum. Three RL10 versions are in production for the Centaur upper stage of the Atlas V and the DCSS of the Delta IV. Three more versions are in development for the Exploration Upper Stage of the Space Launch System and the Centaur V of the Vulcan rocket.

<span class="mw-page-title-main">Titan IV</span> Expendable launch system used by the US Air Force

Titan IV was a family of heavy-lift space launch vehicles developed by Martin Marietta and operated by the United States Air Force from 1989 to 2005. Launches were conducted from Cape Canaveral Air Force Station, Florida and Vandenberg Air Force Base, California.

<span class="mw-page-title-main">Kennedy Space Center Launch Complex 39</span> Historic Apollo Moonport

Launch Complex 39 (LC-39) is a rocket launch site at the John F. Kennedy Space Center on Merritt Island in Florida, United States. The site and its collection of facilities were originally built as the Apollo program's "Moonport" and later modified for the Space Shuttle program.

<span class="mw-page-title-main">Cape Canaveral Launch Complex 34</span> Launch site at Cape Canaveral Space Force Station

Launch Complex 34 (LC-34) is a deactivated launch site on Cape Canaveral Space Force Station, Florida. LC-34 and its companion LC-37 to the north were used by NASA from 1961 through 1968 to launch Saturn I and IB rockets as part of the Apollo program. It was the site of the Apollo 1 fire, which claimed the lives of astronauts Gus Grissom, Ed White, and Roger Chaffee on January 27, 1967. The first crewed Apollo launch — Apollo 7 on October 11, 1968 — was the last time LC-34 was used.

<span class="mw-page-title-main">Spaceflight before 1951</span> List of spaceflights prior to the year 1951

Spaceflight as a practical endeavor began during World War II with the development of operational liquid-fueled rockets. Beginning life as a weapon, the V-2 was pressed into peaceful service after the war at the United States' White Sands Missile Range as well as the Soviet Union's Kapustin Yar. This led to a flourishing of missile designs setting the stage for the exploration of space. The small American WAC Corporal rocket was evolved into the Aerobee, a much more powerful sounding rocket. Exploration of space began in earnest in 1947 with the flight of the first Aerobee, 46 of which had flown by the end of 1950. These and other rockets, both Soviet and American, returned the first direct data on air density, temperature, charged particles and magnetic fields in the Earth's upper atmosphere.

Studied by Marshall Space Flight Center in 1968, the Saturn V-Centaur booster would have been used for deep space missions if it had flown. It consisted of an ordinary Saturn V launch vehicle, except that the Apollo spacecraft would be replaced with a Centaur upper stage, as a high-energy liquid-fueled fourth stage, which would provide a 30% performance improvement over Saturn V-A/Saturn INT-20. This combination never flew.

<span class="mw-page-title-main">Comparison of orbital launch systems</span>

This comparison of orbital launch systems lists the attributes of all individual rocket configurations designed to reach orbit. A first list contains rockets that are operational or in development as of 2023; a second list includes all upcoming rockets and a third list includes all retired rockets For the simple list of all conventional launcher families, see: Comparison of orbital launchers families. For the list of predominantly solid-fueled orbital launch systems, see: Comparison of solid-fueled orbital launch systems.

<span class="mw-page-title-main">Saturn V</span> American super heavy-lift expendable rocket

Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered with liquid fuel. Flown from 1967 to 1973, it was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

<span class="mw-page-title-main">Nike Smoke</span>

The Nike Smoke was a sounding rocket, part of a research project on the behavior of the horizontal winds in the upper atmosphere, developed by NASA in the 1960s based on the Nike booster. The goal was to obtain more accurate data on the behavior of these winds in order to guide the design of new vehicles particularly the Saturn family of vehicles. Nike Smoke used the release of titanium tetrachloride at altitude to create a smoke trail at altitude. The release created a white smoke trail which when photographed from two cameras situated 10–12 miles from the launch site and 90 degrees apart. Comparison of the photographs allowed winds aloft to be calculated in both direction and velocity.

<span class="mw-page-title-main">Vanguard SLV-3</span> Failed rocket launch

Vanguard SLV-3, also called Vanguard Satellite Launch Vehicle-3 hoped to be the second successful flight of the American Vanguard rocket following successful Vanguard 1 satellite on rocket Vanguard TV-4.

References

  1. von Ofenheim, Bill (January 20, 2004). "Saturn I SA-2 Launch". NASA Scientific and Technical Information Program. Archived from the original on May 17, 2011. Retrieved July 2, 2009.
  2. Wade, Mark. "Highwater". Astronautix.com. Archived from the original on January 16, 2010. Retrieved December 5, 2009.
  3. 1 2 3 Bilstein, Roger E (1996). Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicles. Washington, DC: NASA History Office. ISBN   0-16-048909-1. Archived from the original on 2004-10-15.
  4. 1 2 "Saturn Aids GSFC Research" (PDF). Goddard News. 2 (10). May 4, 1962. Archived from the original (PDF) on July 21, 2011.
  5. Ryba, Jeanne (July 8, 2009). "History: Saturn Test Flights". NASA.gov. Retrieved December 5, 2009.
  6. Wade, Mark. "Cape Canaveral LC34". Astronautix.com. Archived from the original on January 31, 2010. Retrieved December 5, 2009.

Further reading