Project MinE

Last updated

Project MinE is an independent large scale whole genome research project that was initiated by 2 patients with amyotrophic lateral sclerosis and started on World ALS Day, June 21, 2013. [1]

The symptoms of amyotrophic lateral sclerosis are caused by degeneration of motor nerve cells (motor neurons) in the spinal cord, brainstem, and motor cortex. The exact cause of this degeneration is unknown but it is thought that environmental exposures and genetic factors play a role in susceptibility to the disease. In 5-10% of patients the family history is positive for ALS. However, it is not always possible to establish the mode of inheritance in each pedigree and not all familial cases may suffer from a genuine Mendelian or monogenic disorder. Autosomal-dominant mutations in the C9orf72 and the SOD1 gene are found in a substantial number of familial ALS cases. Mutations in other genes (such as VAPB [2], ANG, TARDBP and FUS) have been reported, but are found at a much lower frequency and with variable penetrance, suggesting the involvement of other genes.

Project MinE is a research project to systematically interrogate the human genome for both common and rare genetic variation in ALS (genetic "data mining" explains the project name). The project consists of two phases and combines a genome-wide association study (GWAS) study with whole genome sequencing:

The long-term benefit of the approach taken for project MinE is the priceless catalogue of many non-ALS whole genomes that can be used to investigate other human diseases, including Diabetes Mellitus, [2] some types of cancer, and other neurological disorders. [3] [4] Project MinE is worldwide the largest genetic study for Amyotrophic Lateral Sclerosis. The work has started in the second quarter of 2013 and is a unique international collaboration between scientists, industry, social foundations and patients. On July 25, 2016, the first results were published in 2 publications in Nature Genetics leading to the discovery of NEK1 and C21orf2 as new ALS risk genes. [5] [6]

Related Research Articles

Single-nucleotide polymorphism Single nucleotide position in genomic DNA at which different sequence alternatives exist

In genetics, a single-nucleotide polymorphism is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in a sufficiently large fraction of the population, many publications do not apply such a frequency threshold.

Haplotype Group of genes from one parent

A haplotype is a group of alleles in an organism that are inherited together from a single parent.

The International HapMap Project was an organization that aimed to develop a haplotype map (HapMap) of the human genome, to describe the common patterns of human genetic variation. HapMap is used to find genetic variants affecting health, disease and responses to drugs and environmental factors. The information produced by the project is made freely available for research.

Genetic association is when one or more genotypes within a population co-occur with a phenotypic trait more often than would be expected by chance occurrence.

A tag SNP is a representative single nucleotide polymorphism (SNP) in a region of the genome with high linkage disequilibrium that represents a group of SNPs called a haplotype. It is possible to identify genetic variation and association to phenotypes without genotyping every SNP in a chromosomal region. This reduces the expense and time of mapping genome areas associated with disease, since it eliminates the need to study every individual SNP. Tag SNPs are useful in whole-genome SNP association studies in which hundreds of thousands of SNPs across the entire genome are genotyped.

Genome-wide association study Study of genetic variants in different individuals

In genomics, a genome-wide association study, also known as whole genome association study, is an observational study of a genome-wide set of genetic variants in different individuals to see if any variant is associated with a trait. GWA studies typically focus on associations between single-nucleotide polymorphisms (SNPs) and traits like major human diseases, but can equally be applied to any other genetic variants and any other organisms.

Personal genomics or consumer genetics is the branch of genomics concerned with the sequencing, analysis and interpretation of the genome of an individual. The genotyping stage employs different techniques, including single-nucleotide polymorphism (SNP) analysis chips, or partial or full genome sequencing. Once the genotypes are known, the individual's variations can be compared with the published literature to determine likelihood of trait expression, ancestry inference and disease risk.

ALS2

Alsin is a protein that in humans is encoded by the ALS2 gene. ALS2 orthologs have been identified in all mammals for which complete genome data are available.

1000 Genomes Project International research effort on genetic variation

The 1000 Genomes Project, launched in January 2008, was an international research effort to establish by far the most detailed catalogue of human genetic variation. Scientists planned to sequence the genomes of at least one thousand anonymous participants from a number of different ethnic groups within the following three years, using newly developed technologies which were faster and less expensive. In 2010, the project finished its pilot phase, which was described in detail in a publication in the journal Nature. In 2012, the sequencing of 1092 genomes was announced in a Nature publication. In 2015, two papers in Nature reported results and the completion of the project and opportunities for future research.

Exome sequencing Sequencing of all the exons of a genome

Exome sequencing, also known as whole exome sequencing (WES), is a genomic technique for sequencing all of the protein-coding regions of genes in a genome. It consists of two steps: the first step is to select only the subset of DNA that encodes proteins. These regions are known as exons – humans have about 180,000 exons, constituting about 1% of the human genome, or approximately 30 million base pairs. The second step is to sequence the exonic DNA using any high-throughput DNA sequencing technology.

Disease gene identification is a process by which scientists identify the mutant genotypes responsible for an inherited genetic disorder. Mutations in these genes can include single nucleotide substitutions, single nucleotide additions/deletions, deletion of the entire gene, and other genetic abnormalities.

Most cases of type 2 diabetes involved many genes contributing small amount to the overall condition. As of 2011 more than 36 genes have been found that contribute to the risk of type 2 diabetes. All of these genes together still only account for 10% of the total genetic component of the disease.

C9orf72

C9orf72 is a protein which in humans is encoded by the gene C9orf72.

Imputation in genetics refers to the statistical inference of unobserved genotypes. It is achieved by using known haplotypes in a population, for instance from the HapMap or the 1000 Genomes Project in humans, thereby allowing to test for association between a trait of interest and experimentally untyped genetic variants, but whose genotypes have been statistically inferred ("imputed"). Genotype imputation is usually performed on SNPs, the most common kind of genetic variation.

The interdisciplinary research field of Computational and Statistical Genetics uses the latest approaches in genomics, quantitative genetics, computational sciences, bioinformatics and statistics to develop and apply computationally efficient and statistically robust methods to sort through increasingly rich and massive genome wide data sets to identify complex genetic patterns, gene functionalities and interactions, disease and phenotype associations involving the genomes of various organisms. This field is also often referred to as computational genomics. This is an important discipline within the umbrella field computational biology.

Yusuke Nakamura (geneticist)

Yusuke Nakamura is a Japanese prominent geneticist and cancer researcher best known for developing Genome-Wide Association Study (GWAS). He is one of the world's pioneers in applying genetic variations and whole genome sequencing, leading the research field of personalized medicine.

Structural variation in the human genome Genomic alterations, varying between individuals

Structural variation in the human genome is operationally defined as genomic alterations, varying between individuals, that involve DNA segments larger than 1 kilo base (kb), and could be either microscopic or submicroscopic. This definition distinguishes them from smaller variants that are less than 1 kb in size such as short deletions, insertions, and single nucleotide variants.

There are more than 25 genes known to be associated with amyotrophic lateral sclerosis (ALS) as of June 2018, which collectively account for about 70% of cases of familial ALS (fALS) and 15% of cases of sporadic ALS (sALS). About 5–10% of cases of ALS are directly inherited from a person's parents. Overall, first-degree relatives of an individual with ALS have a 1% risk of developing ALS. ALS has an oligogenic mode of inheritance, meaning that mutations in two or more genes are required to cause disease.

Personality traits are patterns of thoughts, feelings and behaviors that reflect the tendency to respond in certain ways under certain circumstances.

Rosa Rademakers, Ph.D., is a neurogeneticist and professor within the Department of Neuroscience at the Mayo Clinic. Her research centers on the genetic basis of neurodegenerative diseases, such as identifying causal genes and their function, exploring familial risk factors, and the mechanism of the degeneration. Her neurodegenerative diseases of focus include "Alzheimer's disease (AD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS)." She received a Bachelor of Arts in Biology, a Master of Arts in Biochemistry, and a Ph.D. in Science, all from the University of Antwerp. She came to the Mayo Clinic in 2005 for a post-doctoral fellowship, and in 2007 she was given a lab director position.

References

  1. Press release project MinE, June 21, 2013 : "Archived copy" (PDF). Archived from the original (PDF) on 2013-12-03. Retrieved 2014-05-09.CS1 maint: archived copy as title (link)
  2. Wang, Y; Nie, M; Li, W; Ping, F; Hu, Y; Ma, L; Gao, J; Liu, J (2011). "Association of Six Single Nucleotide Polymorphisms with Gestational Diabetes Mellitus in a Chinese Population". PLOS ONE. 6 (11): e26953. Bibcode:2011PLoSO...626953W. doi: 10.1371/journal.pone.0026953 . PMC   3214026 . PMID   22096510.
  3. Seshadri, Sudha; et al. (2010). "Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease". JAMA. 303 (18): 1832–1840. doi:10.1001/jama.2010.574. PMC   2989531 . PMID   20460622.
  4. Maraganore, DM; de Andrade, M; Lesnick, TG; Strain, KJ; Farrer, MJ; Rocca, WA; Pant, PV; Frazer, KA; Cox, DR; Ballinger, DG (2005). "High-resolution whole-genome association study of Parkinson disease". Am. J. Hum. Genet. 77 (5): 685–93. doi:10.1086/496902. PMC   1271381 . PMID   16252231.
  5. http://www.nature.com/ng/journal/v48/n9/full/ng.3622.html
  6. http://www.nature.com/ng/journal/v48/n9/full/ng.3626.html