Proximal gradient method

Last updated

Proximal gradient methods are a generalized form of projection used to solve non-differentiable convex optimization problems.

Contents

A comparison between the iterates of the projected gradient method (in red) and the Frank-Wolfe method (in green).

Many interesting problems can be formulated as convex optimization problems of the form

where are possibly non-differentiable convex functions. The lack of differentiability rules out conventional smooth optimization techniques like the steepest descent method and the conjugate gradient method, but proximal gradient methods can be used instead.

Proximal gradient methods starts by a splitting step, in which the functions are used individually so as to yield an easily implementable algorithm. They are called proximal because each non-differentiable function among is involved via its proximity operator. Iterative shrinkage thresholding algorithm, [1] projected Landweber, projected gradient, alternating projections, alternating-direction method of multipliers, alternating split Bregman are special instances of proximal algorithms. [2]

For the theory of proximal gradient methods from the perspective of and with applications to statistical learning theory, see proximal gradient methods for learning.

Projection onto convex sets (POCS)

One of the widely used convex optimization algorithms is projections onto convex sets (POCS). This algorithm is employed to recover/synthesize a signal satisfying simultaneously several convex constraints. Let be the indicator function of non-empty closed convex set modeling a constraint. This reduces to convex feasibility problem, which require us to find a solution such that it lies in the intersection of all convex sets . In POCS method each set is incorporated by its projection operator . So in each iteration is updated as

However beyond such problems projection operators are not appropriate and more general operators are required to tackle them. Among the various generalizations of the notion of a convex projection operator that exist, proximal operators are best suited for other purposes.

Examples

Special instances of Proximal Gradient Methods are

See also

Notes

  1. Daubechies, I; Defrise, M; De Mol, C (2004). "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint". Communications on Pure and Applied Mathematics. 57 (11): 1413–1457. arXiv: math/0307152 . Bibcode:2003math......7152D. doi:10.1002/cpa.20042.
  2. Details of proximal methods are discussed in Combettes, Patrick L.; Pesquet, Jean-Christophe (2009). "Proximal Splitting Methods in Signal Processing". arXiv: 0912.3522 [math.OC].

Related Research Articles

<span class="mw-page-title-main">Mathematical optimization</span> Study of mathematical algorithms for optimization problems

Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

<span class="mw-page-title-main">Gradient descent</span> Optimization algorithm

Gradient descent is a method for unconstrained mathematical optimization. It is a first-order iterative algorithm for minimizing a differentiable multivariate function.

<span class="mw-page-title-main">Newton's method in optimization</span> Method for finding stationary points of a function

In calculus, Newton's method is an iterative method for finding the roots of a differentiable function , which are solutions to the equation . However, to optimize a twice-differentiable , our goal is to find the roots of . We can therefore use Newton's method on its derivative to find solutions to , also known as the critical points of . These solutions may be minima, maxima, or saddle points; see section "Several variables" in Critical point (mathematics) and also section "Geometric interpretation" in this article. This is relevant in optimization, which aims to find (global) minima of the function .

<span class="mw-page-title-main">Interior-point method</span> Algorithms for solving convex optimization problems

Interior-point methods are algorithms for solving linear and non-linear convex optimization problems. IPMs combine two advantages of previously-known algorithms:

Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets. Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.

<span class="mw-page-title-main">Regularization (mathematics)</span> Technique to make a model more generalizable and transferable

In mathematics, statistics, finance, and computer science, particularly in machine learning and inverse problems, regularization is a process that converts the answer of a problem to a simpler one. It is often used in solving ill-posed problems or to prevent overfitting.

The Frank–Wolfe algorithm is an iterative first-order optimization algorithm for constrained convex optimization. Also known as the conditional gradient method, reduced gradient algorithm and the convex combination algorithm, the method was originally proposed by Marguerite Frank and Philip Wolfe in 1956. In each iteration, the Frank–Wolfe algorithm considers a linear approximation of the objective function, and moves towards a minimizer of this linear function.

Penalty methods are a certain class of algorithms for solving constrained optimization problems.

Subgradient methods are convex optimization methods which use subderivatives. Originally developed by Naum Z. Shor and others in the 1960s and 1970s, subgradient methods are convergent when applied even to a non-differentiable objective function. When the objective function is differentiable, sub-gradient methods for unconstrained problems use the same search direction as the method of steepest descent.

In computer science, online machine learning is a method of machine learning in which data becomes available in a sequential order and is used to update the best predictor for future data at each step, as opposed to batch learning techniques which generate the best predictor by learning on the entire training data set at once. Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is generated as a function of time, e.g., prediction of prices in the financial international markets. Online learning algorithms may be prone to catastrophic interference, a problem that can be addressed by incremental learning approaches.

Dykstra's algorithm is a method that computes a point in the intersection of convex sets, and is a variant of the alternating projection method. In its simplest form, the method finds a point in the intersection of two convex sets by iteratively projecting onto each of the convex set; it differs from the alternating projection method in that there are intermediate steps. A parallel version of the algorithm was developed by Gaffke and Mathar.

Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier. The augmented Lagrangian is related to, but not identical with, the method of Lagrange multipliers.

The Landweber iteration or Landweber algorithm is an algorithm to solve ill-posed linear inverse problems, and it has been extended to solve non-linear problems that involve constraints. The method was first proposed in the 1950s by Louis Landweber, and it can be now viewed as a special case of many other more general methods.

In mathematics, projections onto convex sets (POCS), sometimes known as the alternating projection method, is a method to find a point in the intersection of two closed convex sets. It is a very simple algorithm and has been rediscovered many times. The simplest case, when the sets are affine spaces, was analyzed by John von Neumann. The case when the sets are affine spaces is special, since the iterates not only converge to a point in the intersection but to the orthogonal projection of the point onto the intersection. For general closed convex sets, the limit point need not be the projection. Classical work on the case of two closed convex sets shows that the rate of convergence of the iterates is linear. There are now extensions that consider cases when there are more than two sets, or when the sets are not convex, or that give faster convergence rates. Analysis of POCS and related methods attempt to show that the algorithm converges, and whether it converges to the projection of the original point. These questions are largely known for simple cases, but a topic of active research for the extensions. There are also variants of the algorithm, such as Dykstra's projection algorithm. See the references in the further reading section for an overview of the variants, extensions and applications of the POCS method; a good historical background can be found in section III of.

Proximal gradientmethods for learning is an area of research in optimization and statistical learning theory which studies algorithms for a general class of convex regularization problems where the regularization penalty may not be differentiable. One such example is regularization of the form

In mathematical optimization, the proximal operator is an operator associated with a proper, lower semi-continuous convex function from a Hilbert space to , and is defined by:

In mathematics, mirror descent is an iterative optimization algorithm for finding a local minimum of a differentiable function.

(Stochastic) variance reduction is an algorithmic approach to minimizing functions that can be decomposed into finite sums. By exploiting the finite sum structure, variance reduction techniques are able to achieve convergence rates that are impossible to achieve with methods that treat the objective as an infinite sum, as in the classical Stochastic approximation setting.

The Moreau envelope of a proper lower semi-continuous convex function is a smoothed version of . It was proposed by Jean-Jacques Moreau in 1965.

<span class="mw-page-title-main">Chambolle-Pock algorithm</span> Primal-Dual algorithm optimization for convex problems

In mathematics, the Chambolle-Pock algorithm is an algorithm used to solve convex optimization problems. It was introduced by Antonin Chambolle and Thomas Pock in 2011 and has since become a widely used method in various fields, including image processing, computer vision, and signal processing.

References