Company type | Private |
---|---|
Industry | Pumps |
Founded | 1875 |
Headquarters | Coleford, Gloucestershire, United Kingdom |
Area served | Worldwide |
Key people | Alok Kirloskar (MD) |
Products | |
Revenue | $200 Million USD [1] |
Number of employees | ~500 |
Website | www |
The Pulsometer steam pump is a pistonless pump which was patented in 1872 [2] by American Charles Henry Hall. In 1875 a British engineer bought the patent rights of the Pulsometer [3] and it was introduced to the market soon thereafter. The invention was inspired by the Savery steam pump invented by Thomas Savery. Around the turn of the century, it was a popular and effective pump for quarry pumping.
This extremely simple pump was made of cast iron, and had no pistons, rods, cylinders, cranks, or flywheels. It operated by the direct action of steam on water. The mechanism consisted of two chambers. As the steam condensed in one chamber, it acted as a suction pump, while in the other chamber, steam was introduced under pressure and so it acted as a force pump. At the end of every stroke, a ball valve consisting of a small brass ball moved slightly, causing the two chambers to swap functions from suction-pump to force-pump and vice versa. The result was that the water was first suction pumped and then force pumped. [4]
A good explanation can be found in the 1901 article referenced below:
The operation of the pulsometer is as follows: The ball being at the entrance of the left-hand chamber, and the right-hand being full of water, steam enters, pressing on the surface of the water, and forcing it out through the discharge passage. A rapid condensation of steam occurs from contact with the water and with the walls of the chamber, previously cooled by the water. When the water level has reached the horizontal edge of the discharge passage, a large volume of steam suddenly escapes and is at once condensed by the relatively cold water between the chamber and the discharge valve. The pressure in the chamber quickly decreases; it cannot be sustained by steam from the boiler, for, in accordance with the inventor's first specifications, the steam pipe is small. If now the pressure in the left chamber is equal, or nearly equal, to that in the right, friction caused by the rapid flow of steam past the ball will draw the ball over and close the right-hand chamber. Cut off from further supply, the steam, in contact with water, begins to condense; a jet of cold water from the discharge pipe spurts up through the injection tube, and by breaking into spray against the side of the steam space, completes the condensation. The partial vacuum produced brings water through the suction valve to fill the chamber; but at the same time the air valve admits a little air, which passes up ahead of the water and forms an elastic cushion to prevent the water from striking violently against the steam ball. The air chamber is for the purpose of preventing water-hammer in the suction pipe.
The pump ran automatically without attendance. It was praised for its "extreme simplicity of construction, operation, compact form, high efficiency, economy, durability, and adaptability". Later designs were improved upon to enhance efficiency and to make the machine more accessible for inspection and repairs, thus reducing maintenance costs. [5]
In the January 1901 issue of Technology Quarterly and Proceedings of the Society of Arts, an article appeared by Joseph C. Riley [6] describing key operational details and technical evaluation of the pulsometer pump's performance. Riley noted that although somewhat inefficient, the pulsometer's simplicity and robust construction made it well suited to pumping "thick liquids or semi-fluids, such as heavy syrups, or even liquid mud". [7]
Pulsometer Engineering Company Limited was founded in Britain in 1875 after a British engineer bought the patent rights of the pulsometer pump from Thomas Hall. In 1901 the company moved from London to Reading, Berkshire. In 1961 Pulsometer merged with Sigmund Pumps of Gateshead to form Sigmund Pulsometer Pumps. SPP Pumps Ltd became one of the largest pump companies in Europe. SPP Pumps Ltd is now part of Kirloskar Brothers Ltd.
A pump is a device that moves fluids, or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic or pneumatic energy.
A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be transformed by a connecting rod and crank into rotational force for work. The term "steam engine" is most commonly applied to reciprocating engines as just described, although some authorities have also referred to the steam turbine and devices such as Hero's aeolipile as "steam engines". The essential feature of steam engines is that they are external combustion engines, where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process is called the Rankine cycle. In general usage, the term steam engine can refer to either complete steam plants, such as railway steam locomotives and portable engines, or may refer to the piston or turbine machinery alone, as in the beam engine and stationary steam engine.
Thomas Savery was an English inventor and engineer. He invented the first commercially used steam-powered device, a steam pump which is often referred to as the "Savery engine". Savery's steam pump was a revolutionary method of pumping water, which improved mine drainage and made widespread public water supply practicable.
The atmospheric engine was invented by Thomas Newcomen in 1712, and is often referred to as the Newcomen fire engine or simply as a Newcomen engine. The engine was operated by condensing steam drawn into the cylinder, thereby creating a partial vacuum which allowed the atmospheric pressure to push the piston into the cylinder. It was historically significant as the first practical device to harness steam to produce mechanical work. Newcomen engines were used throughout Britain and Europe, principally to pump water out of mines. Hundreds were constructed throughout the 18th century.
The Watt steam engine design was an invention of James Watt that became synonymous with steam engines during the Industrial Revolution, and it was many years before significantly new designs began to replace the basic Watt design.
A vacuum ejector, or simply ejector, or aspirator, is a type of vacuum pump, which produces vacuum by means of the Venturi effect.
Steam power developed slowly over a period of several hundred years, progressing through expensive and fairly limited devices in the early 17th century, to useful pumps for mining in 1700, and then to Watt's improved steam engine designs in the late 18th century. It is these later designs, introduced just when the need for practical power was growing due to the Industrial Revolution, that truly made steam power commonplace.
An injector is a system of ducting and nozzles used to direct the flow of a high-pressure fluid in such a way that a lower pressure fluid is entrained in the jet and carried through a duct to a region of higher pressure. It is a fluid-dynamic pump with no moving parts except a valve to control inlet flow.
An automatic lubricator is a device fitted to a steam engine to supply lubricating oil to the cylinders and, sometimes, the bearings and axle box mountings as well. There are various types of automatic lubricator, which include various designs of displacement, hydrostatic and mechanical lubricators.
Hydronics is the use of liquid water or gaseous water (steam) or a water solution as a heat-transfer medium in heating and cooling systems. The name differentiates such systems from oil and refrigerant systems.
Kirloskar Group is an Indian conglomerate, headquartered in Pune and manufacturing plant in Kirloskarvadi. The group exports to over 70 countries over most of Africa, Southeast Asia and Europe. The flagship and holding company, Kirloskar Brothers Ltd, established in 1888 in Kirloskarvadi, kirloskar group is India's largest maker of pumps and valves. It was the manufacturer of India's first modern iron plough. One of the group companies is a major component supplier for the Indian Arihant Nuclear Submarine program
Hydropneumatic devices are systems that operate using water and gas. The devices are used in various applications.
This timeline of heat engine technology describes how heat engines have been known since antiquity but have been made into increasingly useful devices since the 17th century as a better understanding of the processes involved was gained. A heat engine is any system that converts heat to mechanical energy, which can then be used to do mechanical work.They continue to be developed today.
Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) may all use economizers. In simple terms, an economizer is a heat exchanger.
A metering pump moves a precise volume of liquid in a specified time period providing an accurate volumetric flow rate. Delivery of fluids in precise adjustable flow rates is sometimes called metering. The term "metering pump" is based on the application or use rather than the exact kind of pump used, although a couple types of pumps are far more suitable than most other types of pumps.
A pistonless pump is a type of pump designed to move fluids without any moving parts other than three chamber valves.
The first recorded rudimentary steam engine was the aeolipile mentioned by Vitruvius between 30 and 15 BC and, described by Heron of Alexandria in 1st-century Roman Egypt. Several steam-powered devices were later experimented with or proposed, such as Taqi al-Din's steam jack, a steam turbine in 16th-century Ottoman Egypt, Denis Papin's working model of the steam digester in 1679 and Thomas Savery's steam pump in 17th-century England. In 1712, Thomas Newcomen's atmospheric engine became the first commercially successful engine using the principle of the piston and cylinder, which was the fundamental type of steam engine used until the early 20th century. The steam engine was used to pump water out of coal mines.
A plunger pump is a type of positive displacement pump where the high-pressure seal is stationary and a smooth cylindrical plunger slides through the seal. This makes them different from piston pumps and allows them to be used at higher pressures. This type of pump is often used to transfer municipal and industrial sewage.
A cataract was a speed governing device used for early single-acting beam engines, particularly atmospheric engines and Cornish engines. It was a kind of water clock.
The Humphrey pump is a large internal combustion gas-fueled liquid piston pump. The pump was invented by H. A. Humphrey and first presented in paper to the Institution of Mechanical Engineers on 19 November 1909. A pump capable of pumping 250,000 gallons per hour to a head of 35 feet was exhibited at the 1910 Brussels Exhibition, where it was awarded two Grands Prix, for both engines and pumps.