Pythia (machine learning)

Last updated

Pythia [1] [2] is an ancient text restoration model that recovers missing characters from a damaged text input using deep neural networks. It was created by Yannis Assael, Thea Sommerschield, and Jonathan Prag, researchers from Google DeepMind and the University of Oxford. [3]

To study the society and the history of ancient civilisations, ancient history relies on disciplines such as epigraphy, the study of ancient inscribed texts. Hundreds of thousands of these texts, known as inscriptions, have survived to our day, but are often damaged over the centuries. Illegible parts of the text must then be restored by specialists, called epigraphists, in order to extract meaningful information from the text and use it to expand our knowledge of the context in which the text was written. Pythia takes as input the damaged text, and is trained to return hypothesised restorations of ancient Greek inscriptions, working as an assistive aid for ancient historians. Its neural network architecture works at both the character- and word-level, thereby effectively handling long-term context information, and dealing efficiently with incomplete word representations. Pythia is applicable to any discipline dealing with ancient texts (philology, papyrology, codicology) and can work in any language (ancient or modern). [4]

Related Research Articles

Natural language processing (NLP) is an interdisciplinary subfield of computer science and information retrieval. It is primarily concerned with giving computers the ability to support and manipulate human language. It involves processing natural language datasets, such as text corpora or speech corpora, using either rule-based or probabilistic machine learning approaches. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. To this end, natural language processing often borrows ideas from theoretical linguistics. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.

Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. Recently, artificial neural networks have been able to surpass many previous approaches in performance.

The Pythia is an ancient Greek priestess at the Oracle of Apollo at Delphi.

Digital classics is the application of the tools of digital humanities to the field of classics, or more broadly to the study of the ancient world.

<span class="mw-page-title-main">Long short-term memory</span> Artificial recurrent neural network architecture used in deep learning

Long short-term memory (LSTM) is a type of recurrent neural network (RNN) aimed at dealing with the vanishing gradient problem present in traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models and other sequence learning methods. It aims to provide a short-term memory for RNN that can last thousands of timesteps, thus "long short-term memory". It is applicable to classification, processing and predicting data based on time series, such as in handwriting, speech recognition, machine translation, speech activity detection, robot control, video games, and healthcare.

The Greek-language inscriptions and epigraphy are a major source for understanding of the society, language and history of ancient Greece and other Greek-speaking or Greek-controlled areas. Greek inscriptions may occur on stone slabs, pottery ostraca, ornaments, and range from simple names to full texts.

<span class="mw-page-title-main">Deep learning</span> Branch of machine learning

Deep learning is the subset of machine learning methods based on neural networks with representation learning. The adjective "deep" refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.

<span class="mw-page-title-main">Feature learning</span> Set of learning techniques in machine learning

In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.

Google Brain was a deep learning artificial intelligence research team under the umbrella of Google AI, a research division at Google dedicated to artificial intelligence. Formed in 2011, it combined open-ended machine learning research with information systems and large-scale computing resources. It created tools such as TensorFlow, which allow neural networks to be used by the public, and multiple internal AI research projects, and aimed to create research opportunities in machine learning and natural language processing. It was merged into former Google sister company DeepMind to form Google DeepMind in April 2023.

<span class="mw-page-title-main">Google DeepMind</span> Artificial intelligence division

DeepMind Technologies Limited, doing business as Google DeepMind, is a British-American artificial intelligence research laboratory which serves as a subsidiary of Google. Founded in the UK in 2010, it was acquired by Google in 2014 and merged with Google AI's Google Brain division to become Google DeepMind in April 2023. The company is based in London, with research centres in Canada, France, Germany, and the United States.

Multimodal learning, in the context of machine learning, is a type of deep learning using a combination of various modalities of data, such as text, audio, or images, in order to create a more robust model of the real-world phenomena in question. In contrast, singular modal learning would analyze text or imaging data independently. Multimodal machine learning combines these fundamentally different statistical analyses using specialized modeling strategies and algorithms, resulting in a model that comes closer to representing the real world.

Google Neural Machine Translation (GNMT) was a neural machine translation (NMT) system developed by Google and introduced in November 2016 that used an artificial neural network to increase fluency and accuracy in Google Translate. The neural network consisted of two main blocks, an encoder and a decoder, both of LSTM architecture with 8 1024-wide layers each and a simple 1-layer 1024-wide feedforward attention mechanism connecting them. The total number of parameters has been variously described as over 160 million, approximately 210 million, 278 million or 380 million. By 2020, the system had been replaced by another deep learning system based on transformers.

WaveNet is a deep neural network for generating raw audio. It was created by researchers at London-based AI firm DeepMind. The technique, outlined in a paper in September 2016, is able to generate relatively realistic-sounding human-like voices by directly modelling waveforms using a neural network method trained with recordings of real speech. Tests with US English and Mandarin reportedly showed that the system outperforms Google's best existing text-to-speech (TTS) systems, although as of 2016 its text-to-speech synthesis still was less convincing than actual human speech. WaveNet's ability to generate raw waveforms means that it can model any kind of audio, including music.

<span class="mw-page-title-main">Transformer (deep learning architecture)</span> Machine learning algorithm used for natural-language processing

A transformer is a deep learning architecture developed by Google and based on the multi-head attention mechanism, proposed in a 2017 paper "Attention Is All You Need". Text is converted to numerical representations called tokens, and each token is converted into a vector via looking up from a word embedding table. At each layer, each token is then contextualized within the scope of the context window with other (unmasked) tokens via a parallel multi-head attention mechanism allowing the signal for key tokens to be amplified and less important tokens to be diminished. The transformer paper, published in 2017, is based on the softmax-based attention mechanism proposed by Bahdanau et. al. in 2014 for machine translation, and the Fast Weight Controller, similar to a transformer, proposed in 1992.

Seq2seq is a family of machine learning approaches used for natural language processing. Applications include language translation, image captioning, conversational models, and text summarization. Seq2seq uses sequence transformation: it turns one sequence into another sequence.

LipNet is a deep neural network for visual speech recognition. It was created by Yannis Assael, Brendan Shillingford, Shimon Whiteson and Nando de Freitas, researchers from the University of Oxford. The technique, outlined in a paper in November 2016, is able to decode text from the movement of a speaker's mouth. Traditional visual speech recognition approaches separated the problem into two stages: designing or learning visual features, and prediction. LipNet was the first end-to-end sentence-level lipreading model that learned spatiotemporal visual features and a sequence model simultaneously. Audio-visual speech recognition has enormous practical potential, with applications in improved hearing aids, medical applications, such as improving the recovery and wellbeing of critically ill patients, and speech recognition in noisy environments, such as Nvidia's autonomous vehicles.

The machine learning-based attention method simulates how human attention works by assigning varying levels of importance to different words in a sentence. It assigns importance to each word by calculating "soft" weights for the word's numerical representation, known as its embedding, within a specific section of the sentence called the context window to determine its importance. The calculation of these weights can occur simultaneously in models called transformers, or one by one in models known as recurrent neural networks. Unlike "hard" weights, which are predetermined and fixed during training, "soft" weights can adapt and change with each use of the model.

Self-supervised learning (SSL) is a paradigm in machine learning where a model is trained on a task using the data itself to generate supervisory signals, rather than relying on external labels provided by humans. In the context of neural networks, self-supervised learning aims to leverage inherent structures or relationships within the input data to create meaningful training signals. SSL tasks are designed so that solving it requires capturing essential features or relationships in the data. The input data is typically augmented or transformed in a way that creates pairs of related samples. One sample serves as the input, and the other is used to formulate the supervisory signal. This augmentation can involve introducing noise, cropping, rotation, or other transformations. Self-supervised learning more closely imitates the way humans learn to classify objects.

Khmer inscriptions are a corpus of post-5th century historical texts engraved on materials such as stone and metal ware found in a wide range of mainland Southeast Asia and relating to the Khmer civilization. The study of Khmer inscriptions is known as Khmer epigraphy.

<span class="mw-page-title-main">Text-to-image model</span> Machine learning model

A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.

References

  1. "Oracle of AI solves classic ancient conundrums". The Times . ISSN   0140-0460 . Retrieved 2020-11-30.
  2. "AI is helping scholars restore ancient Greek texts on stone tablets". TechCrunch . Retrieved 2020-11-30.
  3. Assael, Yannis; Sommerschield, Thea; Prag, Jonathan (2019). "Restoring ancient text using deep learning: A case study on Greek epigraphy". Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Stroudsburg, PA, USA: Association for Computational Linguistics. pp. 6367–6374. arXiv: 1910.06262 . doi: 10.18653/v1/d19-1668 .
  4. "Restoring ancient text using deep learning: a case study on Greek epigraphy". DeepMind . Retrieved 2020-11-30.