Quality control and genetic algorithms

Last updated

The combination of quality control and genetic algorithms led to novel solutions of complex quality control design and optimization problems. Quality is the degree to which a set of inherent characteristics of an entity fulfils a need or expectation that is stated, general implied or obligatory. [1] ISO 9000 defines quality control as "A part of quality management focused on fulfilling quality requirements". [2] Genetic algorithms are search algorithms, based on the mechanics of natural selection and natural genetics. [3]

Contents

Quality control

Alternative quality control [4] (QC) procedures can be applied to a process to test statistically the null hypothesis, that the process conforms to the quality specifications and consequently is in control, against the alternative, that the process is out of control. When a true null hypothesis is rejected, a statistical type I error is committed. We have then a false rejection of a run of the process. The probability of a type I error is called probability of false rejection. When a false null hypothesis is accepted, a statistical type II error is committed. We fail then to detect a significant change in the probability density function of a quality characteristic of the process. The probability of rejection of a false null hypothesis equals the probability of detection of the nonconformity of the process to the quality specifications.

The QC procedure to be designed or optimized can be formulated as:

(1)

where denotes a statistical decision rule, ni denotes the size of the sample Si, that is the number of the samples the rule is applied upon, and denotes the vector of the rule specific parameters, including the decision limits. Each symbol # denotes either the Boolean operator AND or the operator OR. Obviously, for # denoting AND, and for n1 < n2 <...< nq, that is for S1S2 ⊂ .... ⊂ Sq, the (1) denotes a q-sampling QC procedure.

Each statistical decision rule is evaluated by calculating the respective statistic of the measured quality characteristic of the sample. Then, if the statistic is out of the interval between the decision limits, the decision rule is considered to be true. Many statistics can be used, including the following: a single value of the variable of a sample, the range, the mean, and the standard deviation of the values of the variable of the samples, the cumulative sum, the smoothed mean, and the smoothed standard deviation. Finally, the QC procedure is evaluated as a Boolean proposition. If it is true, then the null hypothesis is considered to be false, the process is considered to be out of control, and the run is rejected.

A quality control procedure is considered to be optimum when it minimizes (or maximizes) a context specific objective function. The objective function depends on the probabilities of detection of the nonconformity of the process and of false rejection. These probabilities depend on the parameters of the quality control procedure (1) and on the probability density functions (see probability density function) of the monitored variables of the process.

Genetic algorithms

Genetic algorithms [5] [6] [7] are robust search algorithms, that do not require knowledge of the objective function to be optimized and search through large spaces quickly. Genetic algorithms have been derived from the processes of the molecular biology of the gene and the evolution of life. Their operators, cross-over, mutation, and reproduction, are isomorphic with the synonymous biological processes. Genetic algorithms have been used to solve a variety of complex optimization problems. Additionally the classifier systems and the genetic programming paradigm have shown us that genetic algorithms can be used for tasks as complex as the program induction.

Quality control and genetic algorithms

In general, we can not use algebraic methods to optimize the quality control procedures. Usage of enumerative methods would be very tedious, especially with multi-rule procedures, as the number of the points of the parameter space to be searched grows exponentially with the number of the parameters to be optimized. Optimization methods based on genetic algorithms offer an appealing alternative.

Furthermore, the complexity of the design process of novel quality control procedures is obviously greater than the complexity of the optimization of predefined ones.

In fact, since 1993, genetic algorithms have been used successfully to optimize and to design novel quality control procedures. [8] [9] [10]

See also

Related Research Articles

Biostatistics are the development and application of statistical methods to a wide range of topics in biology. It encompasses the design of biological experiments, the collection and analysis of data from those experiments and the interpretation of the results.

<span class="mw-page-title-main">Statistics</span> Study of the collection, analysis, interpretation, and presentation of data

Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.

A statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis. Hypothesis testing allows us to make probabilistic statements about population parameters.

In statistics, the power of a binary hypothesis test is the probability that the test correctly rejects the null hypothesis when a specific alternative hypothesis is true. It is commonly denoted by , and represents the chances of a true positive detection conditional on the actual existence of an effect to detect. Statistical power ranges from 0 to 1, and as the power of a test increases, the probability of making a type II error by wrongly failing to reject the null hypothesis decreases.

A t-test is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis. It is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in the test statistic were known. When the scaling term is estimated based on the data, the test statistic—under certain conditions—follows a Student's t distribution. The t-test's most common application is to test whether the means of two populations are different.

In statistical hypothesis testing, the alternative hypothesis is one of the proposed proposition in the hypothesis test. In general the goal of hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of alternative hypothesis instead of the exclusive proposition in the test. It is usually consistent with the research hypothesis because it is constructed from literature review, previous studies, etc. However, the research hypothesis is sometimes consistent with the null hypothesis.

In statistics, the Neyman–Pearson lemma was introduced by Jerzy Neyman and Egon Pearson in a paper in 1933. The Neyman-Pearson lemma is part of the Neyman-Pearson theory of statistical testing, which introduced concepts like errors of the second kind, power function, and inductive behavior. The previous Fisherian theory of significance testing postulated only one hypothesis. By introducing a competing hypothesis, the Neyman-Pearsonian flavor of statistical testing allows investigating the two types of errors. The trivial cases where one always rejects or accepts the null hypothesis are of little interest but it does prove that one must not relinquish control over one type of error while calibrating the other. Neyman and Pearson accordingly proceeded to restrict their attention to the class of all level tests while subsequently minimizing type II error, traditionally denoted by . Their seminal paper of 1933, including the Neyman-Pearson lemma, comes at the end of this endeavor, not only showing the existence of tests with the most power that retain a prespecified level of type I error, but also providing a way to construct such tests. The Karlin-Rubin theorem extends the Neyman-Pearson lemma to settings involving composite hypotheses with monotone likelihood ratios.

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. The one-sample version serves a purpose similar to that of the one-sample Student's t-test. For two matched samples, it is a paired difference test like the paired Student's t-test. The Wilcoxon test can be a good alternative to the t-test when population means are not of interest; for example, when one wishes to test whether a population's median is nonzero, or whether there is a better than 50% chance that a sample from one population is greater than a sample from another population.

This glossary of statistics and probability is a list of definitions of terms and concepts used in the mathematical sciences of statistics and probability, their sub-disciplines, and related fields. For additional related terms, see Glossary of mathematics and Glossary of experimental design.

In statistics, an exact (significance) test is a test such that if the null hypothesis is true, then all assumptions made during the derivation of the distribution of the test statistic are met. Using an exact test provides a significance test that maintains the type I error rate of the test at the desired significance level of the test. For example, an exact test at a significance level of , when repeated over many samples where the null hypothesis is true, will reject at most of the time. This is in contrast to an approximate test in which the desired type I error rate is only approximately maintained, while this approximation may be made as close to as desired by making the sample size sufficiently large.

<span class="mw-page-title-main">Estimation of distribution algorithm</span>

Estimation of distribution algorithms (EDAs), sometimes called probabilistic model-building genetic algorithms (PMBGAs), are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates of a probabilistic model, starting with the model encoding an uninformative prior over admissible solutions and ending with the model that generates only the global optima.

In statistics, the false discovery rate (FDR) is a method of conceptualizing the rate of type I errors in null hypothesis testing when conducting multiple comparisons. FDR-controlling procedures are designed to control the FDR, which is the expected proportion of "discoveries" that are false. Equivalently, the FDR is the expected ratio of the number of false positive classifications to the total number of positive classifications. The total number of rejections of the null include both the number of false positives (FP) and true positives (TP). Simply put, FDR = FP /. FDR-controlling procedures provide less stringent control of Type I errors compared to family-wise error rate (FWER) controlling procedures, which control the probability of at least one Type I error. Thus, FDR-controlling procedures have greater power, at the cost of increased numbers of Type I errors.

In statistics, the Durbin–Watson statistic is a test statistic used to detect the presence of autocorrelation at lag 1 in the residuals from a regression analysis. It is named after James Durbin and Geoffrey Watson. The small sample distribution of this ratio was derived by John von Neumann. Durbin and Watson applied this statistic to the residuals from least squares regressions, and developed bounds tests for the null hypothesis that the errors are serially uncorrelated against the alternative that they follow a first order autoregressive process. Note that the distribution of this test statistic does not depend on the estimated regression coefficients and the variance of the errors.

In statistical hypothesis testing, a type I error is the mistaken rejection of an actually true null hypothesis, while a type II error is the failure to reject a null hypothesis that is actually false. Much of statistical theory revolves around the minimization of one or both of these errors, though the complete elimination of either is a statistical impossibility if the outcome is not determined by a known, observable causal process. By selecting a low threshold (cut-off) value and modifying the alpha (α) level, the quality of the hypothesis test can be increased. The knowledge of type I errors and type II errors is widely used in medical science, biometrics and computer science.

<span class="mw-page-title-main">Multiple comparisons problem</span> Problem where one considers a set of inferences simultaneously based on the observed values

In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values.

In statistics, the multinomial test is the test of the null hypothesis that the parameters of a multinomial distribution equal specified values; it is used for categorical data.

Multiple-try Metropolis (MTM) is a sampling method that is a modified form of the Metropolis–Hastings method, first presented by Liu, Liang, and Wong in 2000. It is designed to help the sampling trajectory converge faster, by increasing both the step size and the acceptance rate.

The Newman–Keuls or Student–Newman–Keuls (SNK)method is a stepwise multiple comparisons procedure used to identify sample means that are significantly different from each other. It was named after Student (1927), D. Newman, and M. Keuls. This procedure is often used as a post-hoc test whenever a significant difference between three or more sample means has been revealed by an analysis of variance (ANOVA). The Newman–Keuls method is similar to Tukey's range test as both procedures use studentized range statistics. Unlike Tukey's range test, the Newman–Keuls method uses different critical values for different pairs of mean comparisons. Thus, the procedure is more likely to reveal significant differences between group means and to commit type I errors by incorrectly rejecting a null hypothesis when it is true. In other words, the Neuman-Keuls procedure is more powerful but less conservative than Tukey's range test.

<span class="mw-page-title-main">Group testing</span> Procedure that breaks up the task of identifying certain objects into tests on groups of items

In statistics and combinatorial mathematics, group testing is any procedure that breaks up the task of identifying certain objects into tests on groups of items, rather than on individual ones. First studied by Robert Dorfman in 1943, group testing is a relatively new field of applied mathematics that can be applied to a wide range of practical applications and is an active area of research today.

In statistical hypothesis testing, the error exponent of a hypothesis testing procedure is the rate at which the probabilities of Type I and Type II decay exponentially with the size of the sample used in the test. For example, if the probability of error of a test decays as , where is the sample size, the error exponent is .

References

  1. Hoyle D. ISO 9000 quality systems handbook. Butterworth-Heineman 2001;p.654
  2. ISO 9000:2005, Clause 3.2.10
  3. Goldberg DE. Genetic algorithms in search, optimization and machine learning. Addison-Wesley 1989; p.1.
  4. Duncan AJ. Quality control and industrial statistics. Irwin 1986;pp.1-1123.
  5. Holland, JH. Adaptation in natural and artificial systems. The University of Michigan Press 1975;pp.1-228.
  6. Goldberg DE. Genetic algorithms in search, optimization and machine learning. Addison-Wesley 1989; pp.1-412.
  7. Mitchell M. An Introduction to genetic algorithms. The MIT Press 1998;pp.1-221.
  8. Hatjimihail AT. Genetic algorithms based design and optimization of statistical quality control procedures. Clin Chem 1993;39:1972-8.
  9. Hatjimihail AT, Hatjimihail TT. Design of statistical quality control procedures using genetic algorithms. In LJ Eshelman (ed): Proceedings of the Sixth International Conference on Genetic Algorithms. San Francisco: Morgan Kaufmann 1995;551-7.
  10. He D, Grigoryan A. Joint statistical design of double sampling x and s charts. European Journal of Operational Research 2006;168:122-142.