Quantum inequalities

Last updated

Quantum inequalities are local constraints on the magnitude and extent of distributions of negative energy density in space-time. Initially conceived to clear up a long-standing problem in quantum field theory (namely, the potential for unconstrained negative energy density at a point), quantum inequalities have proven to have a diverse range of applications. [1]

Contents

The form of the quantum inequalities is reminiscent of the uncertainty principle.

Energy conditions in classical field theory

Einstein's theory of General Relativity amounts to a description of the relationship between the curvature of space-time, on the one hand, and the distribution of matter throughout space-time on the other. This precise details of this relationship are determined by the Einstein equations

.

Here, the Einstein tensor describes the curvature of space-time, whilst the energy–momentum tensor describes the local distribution of matter. ( is a constant.) The Einstein equations express local relationships between the quantities involved—specifically, this is a system of coupled non-linear second order partial differential equations.

A very simple observation can be made at this point: the zero-point of energy-momentum is not arbitrary. Adding a "constant" to the right-hand side of the Einstein equations will effect a change in the Einstein tensor, and thus also in the curvature properties of space-time.

All known classical matter fields obey certain "energy conditions". The most famous classical energy condition is the "weak energy condition"; this asserts that the local energy density, as measured by an observer moving along a time-like world line, is non-negative. The weak energy condition is essential for many of the most important and powerful results of classical relativity theory—in particular, the singularity theorems of Hawking et al.

Energy conditions in quantum field theory

The situation in quantum field theory is rather different: the expectation value of the energy density can be negative at any given point. In fact, things are even worse: by tuning the state of the quantum matter field, the expectation value of the local energy density can be made arbitrarily negative.

Inequalities

For free, massless, minimally coupled scalar fields, for all the following inequality holds along any inertial observer worldline with velocity and proper time : [2]

This implies the averaged weak energy condition as , but also places stricter bounds on the length of episodes of negative energy.

Similar bounds can be constructed for massive scalar or electromagnetic fields. [3] Related theorems imply that pulses of negative energy need to be compensated by a larger positive pulse (with magnitude growing with increasing pulse separation). [4]

Note that the inequality above only applies to inertial observers: for accelerated observers weaker or no bounds entail. [5] [6]

Applications

Distributions of negative energy density comprise what is often referred to as exotic matter, and allow for several intriguing possibilities: for example, the Alcubierre drive potentially allows for faster-than-light space travel.

Quantum inequalities constrain the magnitude and space-time extent of negative energy densities. In the case of the Alcubierre warp drive mentioned above, the quantum inequalities predict that the amount of exotic matter required to create and sustain the warp drive "bubble" far exceeds the total mass-energy of the universe.

History

The earliest investigations into quantum inequalities were carried out by Larry Ford and Tom Roman; an early collaborator was Mitch Pfenning, one of Ford's students at Tufts University. Important work was also carried out by Eanna Flanagan.[ citation needed ] More recently, Chris Fewster (of the University of York, in the UK) has applied rigorous mathematics to produce a variety of quite general quantum inequalities. Collaborators have included Ford, Roman, Pfenning, Stefan Hollands and Rainer Verch.[ citation needed ]

Further reading

Websites

Quantum field theory on curved spacetime at the Erwin Schrödinger Institute

Quantum Energy Inequalities (University of York, UK)

Papers

Related Research Articles

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics, and where quantum effects cannot be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, and where the effects of gravity are strong, such as neutron stars.

<span class="mw-page-title-main">Wormhole</span> Hypothetical topological feature of spacetime

A wormhole is a speculative structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

<span class="mw-page-title-main">Alcubierre drive</span> Hypothetical mode of transportation by warping space

The Alcubierre drive is a speculative warp drive idea according to which a spacecraft could achieve apparent faster-than-light travel by contracting space in front of it and expanding space behind it, under the assumption that a configurable energy-density field lower than that of vacuum could be created. Proposed by theoretical physicist Miguel Alcubierre in 1994, the Alcubierre drive is based on a solution of Einstein's field equations. Since those solutions are metric tensors, the Alcubierre drive is also referred to as Alcubierre metric.

<span class="mw-page-title-main">Black hole thermodynamics</span> Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

<span class="mw-page-title-main">Einstein field equations</span> Field equations in general relativity

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

<span class="mw-page-title-main">Relativistic wave equations</span> Wave equations respecting special and general relativity

In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ, are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT. The equations themselves are called "wave equations" or "field equations", because they have the mathematical form of a wave equation or are generated from a Lagrangian density and the field-theoretic Euler–Lagrange equations.

In general relativity, the Raychaudhuri equation, or Landau–Raychaudhuri equation, is a fundamental result describing the motion of nearby bits of matter.

Tensor–vector–scalar gravity (TeVeS), developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm.

In the physics of electromagnetism, the Abraham–Lorentz force is the recoil force on an accelerating charged particle caused by the particle emitting electromagnetic radiation. It is also called the radiation reaction force, radiation damping force or the self-force. It is named after the physicists Max Abraham and Hendrik Lorentz.

In theoretical physics, a scalar–tensor theory is a field theory that includes both a scalar field and a tensor field to represent a certain interaction. For example, the Brans–Dicke theory of gravitation uses both a scalar field and a tensor field to mediate the gravitational interaction.

<span class="mw-page-title-main">Canonical quantum gravity</span> A formulation of general relativity

In physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity. It is a Hamiltonian formulation of Einstein's general theory of relativity. The basic theory was outlined by Bryce DeWitt in a seminal 1967 paper, and based on earlier work by Peter G. Bergmann using the so-called canonical quantization techniques for constrained Hamiltonian systems invented by Paul Dirac. Dirac's approach allows the quantization of systems that include gauge symmetries using Hamiltonian techniques in a fixed gauge choice. Newer approaches based in part on the work of DeWitt and Dirac include the Hartle–Hawking state, Regge calculus, the Wheeler–DeWitt equation and loop quantum gravity.

Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition to Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.

f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.

Bumblebee models are effective field theories describing a vector field with a vacuum expectation value that spontaneously breaks Lorentz symmetry. A bumblebee model is the simplest case of a theory with spontaneous Lorentz symmetry breaking.

<span class="mw-page-title-main">Mathisson–Papapetrou–Dixon equations</span>

In physics, specifically general relativity, the Mathisson–Papapetrou–Dixon equations describe the motion of a massive spinning body moving in a gravitational field. Other equations with similar names and mathematical forms are the Mathisson–Papapetrou equations and Papapetrou–Dixon equations. All three sets of equations describe the same physics.

The pressuron is a hypothetical scalar particle which couples to both gravity and matter theorised in 2013. Although originally postulated without self-interaction potential, the pressuron is also a dark energy candidate when it has such a potential. The pressuron takes its name from the fact that it decouples from matter in pressure-less regimes, allowing the scalar–tensor theory of gravity involving it to pass solar system tests, as well as tests on the equivalence principle, even though it is fundamentally coupled to matter. Such a decoupling mechanism could explain why gravitation seems to be well described by general relativity at present epoch, while it could actually be more complex than that. Because of the way it couples to matter, the pressuron is a special case of the hypothetical string dilaton. Therefore, it is one of the possible solutions to the present non-observation of various signals coming from massless or light scalar fields that are generically predicted in string theory.

Bimetric gravity or bigravity refers to two different classes of theories. The first class of theories relies on modified mathematical theories of gravity in which two metric tensors are used instead of one. The second metric may be introduced at high energies, with the implication that the speed of light could be energy-dependent, enabling models with a variable speed of light.

The term Dirac matter refers to a class of condensed matter systems which can be effectively described by the Dirac equation. Even though the Dirac equation itself was formulated for fermions, the quasi-particles present within Dirac matter can be of any statistics. As a consequence, Dirac matter can be distinguished in fermionic, bosonic or anyonic Dirac matter. Prominent examples of Dirac matter are Graphene, topological insulators, Dirac semimetals, Weyl semimetals, various high-temperature superconductors with -wave pairing and liquid Helium-3. The effective theory of such systems is classified by a specific choice of the Dirac mass, the Dirac velocity, the Dirac matrices and the space-time curvature. The universal treatment of the class of Dirac matter in terms of an effective theory leads to a common features with respect to the density of states, the heat capacity and impurity scattering.

References

  1. Fewster, Christopher (2012). "Lectures on quantum energy inequalities". arXiv: 1208.5399 [gr-qc].
  2. Ford, Larry; Roman, Thomas (1995). "Averaged energy conditions and quantum inequalities". Physical Review D. 51 (8): 4277–4286. arXiv: gr-qc/9410043 . Bibcode:1995PhRvD..51.4277F. doi:10.1103/PhysRevD.51.4277. PMID   10018903. S2CID   7413835.
  3. Ford, Larry; Roman, Thomas (1997). "Restrictions on negative energy density in flat spacetime". Physical Review D. 55 (4): 2082. arXiv: gr-qc/9607003 . doi:10.1103/PhysRevD.55.2082. S2CID   14379955.
  4. Ford, Thomas (1999). "The quantum interest conjecture". Physical Review D. 60 (10): 104018. arXiv: gr-qc/9901074 . doi:10.1103/PhysRevD.60.104018. S2CID   12445154.
  5. Fewster, Christopher (2000). "A general worldline quantum inequality". Classical and Quantum Gravity. 17 (9): 1897–1911. arXiv: gr-qc/9910060 . doi:10.1088/0264-9381/17/9/302. S2CID   250839579.
  6. Ford, Larry; Roman, Thomas (2013). "Negative energy seen by accelerated observers". Physical Review D. 87 (5): 085001. arXiv: 1302.2859 . doi:10.1103/PhysRevD.87.085001. S2CID   119293793.