Quantum inequalities

Last updated

Quantum inequalities [1] are local constraints on the magnitude and extent of distributions of negative energy density in space-time. Initially conceived to clear up a long-standing problem in quantum field theory (namely, the potential for unconstrained negative energy density at a point), quantum inequalities have proven to have a diverse range of applications. [2]

Contents

The form of the quantum inequalities is reminiscent of the uncertainty principle.

Energy conditions in classical field theory

Einstein's theory of General Relativity amounts to a description of the relationship between the curvature of space-time, on the one hand, and the distribution of matter throughout space-time on the other. This precise details of this relationship are determined by the Einstein equations

.

Here, the Einstein tensor describes the curvature of space-time, whilst the energy–momentum tensor describes the local distribution of matter. ( is a constant.) The Einstein equations express local relationships between the quantities involved—specifically, this is a system of coupled non-linear second order partial differential equations.

A very simple observation can be made at this point: the zero-point of energy-momentum is not arbitrary. Adding a "constant" to the right-hand side of the Einstein equations will effect a change in the Einstein tensor, and thus also in the curvature properties of space-time.

All known classical matter fields obey certain "energy conditions". The most famous classical energy condition is the "weak energy condition"; this asserts that the local energy density, as measured by an observer moving along a time-like world line, is non-negative. The weak energy condition is essential for many of the most important and powerful results of classical relativity theory—in particular, the singularity theorems of Hawking et al. Hawking radiation suggests that black holes emit thermal energy due to quantum effects, even though nothing escapes their event horizon directly. This process aligns with quantum inequalities, which set strict limits on how much energy can appear or disappear in a given space. These inequalities ensure that Hawking radiation remains consistent with the laws of physics, reinforcing the reality of both phenomena and their connection in extreme spacetime conditions. [3] In addition, we have The Penrose inequality which is a rule that says the mass (or energy) of a black hole is related to the size of its event horizon (the boundary beyond which nothing can escape). This idea supports "cosmic censorship," which is the idea that we can never directly see a "naked" singularity (a point of infinite density inside a black hole).

In the quantum world, which deals with very small particles, this rule gets expanded to include something called "entropy." Entropy is a way to measure how disordered or chaotic a system is. The idea is that the total entropy (or disorder) of a system, including both the black hole and the quantum matter around it, should never decrease. This idea helps ensure that the laws of physics stay consistent, even in the strange world of quantum mechanics. [4]

Energy conditions in quantum field theory

The situation in quantum field theory is rather different: the expectation value of the energy density can be negative at any given point. In fact, things are even worse: by tuning the state of the quantum matter field, the expectation value of the local energy density can be made arbitrarily negative.

Inequalities

The general form of worldline Quantum Inequality is the following equation. There are many variations towards quantum inequalities but this where all are derived from.

Worldline Quantum Inequality Worldline QI.png
Worldline Quantum Inequality

[5]

energy density in quantum inequalities Equations for p.png
energy density in quantum inequalities

[6] For free, massless, minimally coupled scalar fields, for all the following inequality holds along any inertial observer worldline with velocity and proper time : [7]

This implies the averaged weak energy condition as , but also places stricter bounds on the length of episodes of negative energy.

Similar bounds can be constructed for massive scalar or electromagnetic fields. [8] Related theorems imply that pulses of negative energy need to be compensated by a larger positive pulse (with magnitude growing with increasing pulse separation). [9]

Note that the inequality above only applies to inertial observers: for accelerated observers weaker or no bounds entail. [10] [11]

Applications

Distributions of negative energy density comprise what is often referred to as exotic matter, and allow for several intriguing possibilities: for example, the Alcubierre drive potentially allows for faster-than-light space travel.

Quantum inequalities constrain the magnitude and space-time extent of negative energy densities. In the case of the Alcubierre warp drive mentioned above, the quantum inequalities predict that the amount of exotic matter required to create and sustain the warp drive "bubble" far exceeds the total mass-energy of the universe.

History

The earliest investigations into quantum inequalities were carried out by Larry Ford and Tom Roman; an early collaborator was Mitchael Pfenning, one of Ford's students at Tufts University. Michael J. Pfenning's work on quantum inequalities showed that in a 2-D spacetime (Minkowski and Rindler)

2-Dimensional equation and 4-Dimensional Equation 2 types of equations.png
2-Dimensional equation and 4-Dimensional Equation

[12] , the energy of the electromagnetic field behaves similarly to scalar fields due to the flat nature of spacetime. The difference is the electromagnetic field has two polarization states. However, in a 4-D curved spacetime (like Einstein's universe), the fields behave differently, resulting in distinct quantum inequalities for each. This produces two separate equations for the electromagnetic and scalar fields [13] Important work was also carried out by Eanna Flanagan. Flanagan's work expands on Vollick's findings, which help explain how energy behaves in certain types of spacetimes. This study specifically examines the energy of a free, massless particle within a two-dimensional space, which doesn’t directly apply to the three-dimensional space we experience in our world. [14] More recently, Chris Fewster (of the University of York, in the UK) has applied rigorous mathematics to produce a variety of quite general quantum inequalities. Specific examples are for the free scalar field are computed. Additionally, QEIs are also developed for a specific type of quantum field theory called unitary, positive energy conformal field theories in two dimensions of space and time. In this setting, it's possible to calculate the probability of getting different results when measuring certain "smears" (or averages) of the stress-energy tensor, which represents the distribution of energy and momentum in space and time, when the system is in its lowest energy state (the vacuum state). [15] Reiner Verch's work explores the role of quantum inequalities (QIs) in understanding the behavior of energy and particles in both quantum field theory and quantum mechanics. One key concept is the "backflow phenomenon," where particles appear to flow backward in certain situations, although this is governed by specific limits. Verch also examines Weyl quantization, which relates to the uncertainty principle, suggesting that it is impossible to fully determine both the position and momentum of a particle simultaneously. His research further highlights that, despite appearances, quantum systems exhibit underlying stability, reinforcing fundamental principles of quantum mechanics, including the uncertainty principle and dynamical stability. [16]

Stefan Hollands' work focuses on Quantum Energy Inequalities (QEIs), which are rules in physics that limit how much "negative energy" can appear in certain areas of space and time. He studies these limits for a specific type of theory called conformal field theories (CFTs), which are mathematical models used to describe particles and forces in a two-dimensional flat universe (Minkowski space).

The QEIs depend on two key things:

A weight function, which is like a mathematical tool to focus on specific areas. The central charges of the theory, numbers that describe how complex the theory is. Importantly, these limits do not depend on the specific state of the system, meaning they apply universally. Hollands shows how these rules work for different situations: when measuring energy along paths slower than light (timelike), at the speed of light (null), and across regions of space (spacelike), as well as over entire areas of spacetime.

The takeaway is that these rules prevent too much negative energy from appearing in one spot, ensuring the theory stays consistent with fundamental principles like causality—the idea that causes happen before effects. This helps scientists understand how energy behaves in complex quantum systems. [17]

Related Research Articles

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever present matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations.

In theories of quantum gravity, the graviton is the hypothetical elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.

In general relativity, a naked singularity is a hypothetical gravitational singularity without an event horizon.

<span class="mw-page-title-main">Quantum gravity</span> Description of gravity using discrete values

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, as well as in the early stages of the universe moments after the Big Bang.

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon of a group of particles being generated, interacting, or sharing spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical physics and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

<span class="mw-page-title-main">Wormhole</span> Hypothetical topological feature of spacetime

A wormhole is a hypothetical structure which connects disparate points in spacetime. It may be visualized as a tunnel with two ends at separate points in spacetime. Wormholes are based on a special solution of the Einstein field equations. Specifically, they are a transcendental bijection of the spacetime continuum, an asymptotic projection of the Calabi–Yau manifold manifesting itself in anti-de Sitter space.

<span class="mw-page-title-main">Alcubierre drive</span> Hypothetical FTL transportation by warping space

The Alcubierre drive is a speculative warp drive idea according to which a spacecraft could achieve apparent faster-than-light travel by contracting space in front of it and expanding space behind it, under the assumption that a configurable energy-density field lower than that of vacuum could be created. Proposed by theoretical physicist Miguel Alcubierre in 1994, the Alcubierre drive is based on a solution of Einstein's field equations. Since those solutions are metric tensors, the Alcubierre drive is also referred to as Alcubierre metric.

The world line of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept of modern physics, and particularly theoretical physics.

Hawking radiation is the theoretical emission released outside a black hole's event horizon. This is counterintuitive because once ordinary electromagnetic radiation is inside the event horizon, it cannot escape. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974. Hawking radiation is predicted to be extremely faint and is many orders of magnitude below the current best telescopes' detecting ability.

Doubly special relativity (DSR) – also called deformed special relativity or, by some, extra-special relativity – is a modified theory of special relativity in which there is not only an observer-independent maximum velocity, but also an observer-independent maximum energy scale and/or a minimum length scale. This contrasts with other Lorentz-violating theories, such as the Standard-Model Extension, where Lorentz invariance is instead broken by the presence of a preferred frame. The main motivation for this theory is that the Planck energy should be the scale where as yet unknown quantum gravity effects become important and, due to invariance of physical laws, this scale should remain fixed in all inertial frames.

The Unruh effect is a theoretical prediction in quantum field theory that an observer who is uniformly accelerating through empty space will perceive a thermal bath. This means that even in the absence of any external heat sources, an accelerating observer will detect particles and experience a temperature. In contrast, an inertial observer in the same region of spacetime would observe no temperature.

In theoretical physics, geometrodynamics is an attempt to describe spacetime and associated phenomena completely in terms of geometry. Technically, its goal is to unify the fundamental forces and reformulate general relativity as a configuration space of three-metrics, modulo three-dimensional diffeomorphisms. The origin of this idea can be found in an English mathematician William Kingdon Clifford's works. This theory was enthusiastically promoted by John Wheeler in the 1960s, and work on it continues in the 21st century.

<span class="mw-page-title-main">Quantum field theory in curved spacetime</span> Extension of quantum field theory to curved spacetime

In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields (multigraviton pair production), or by time-independent gravitational fields that contain horizons. The most famous example of the latter is the phenomenon of Hawking radiation emitted by black holes.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena described by Albert Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

In theoretical physics, thermal quantum field theory or finite temperature field theory is a set of methods to calculate expectation values of physical observables of a quantum field theory at finite temperature.

In physics the Einstein-aether theory, also called aetheory, is the name coined in 2004 for a modification of general relativity that has a preferred reference frame and hence violates Lorentz invariance. These generally covariant theories describes a spacetime endowed with both a metric and a unit timelike vector field named the aether. The aether in this theory is "a Lorentz-violating vector field" unrelated to older luminiferous aether theories; the "Einstein" in the theory's name comes from its use of Einstein's general relativity equation.

<span class="mw-page-title-main">Causal sets</span> Approach to quantum gravity using discrete spacetime

The causal sets program is an approach to quantum gravity. Its founding principles are that spacetime is fundamentally discrete and that spacetime events are related by a partial order. This partial order has the physical meaning of the causality relations between spacetime events.

Bumblebee models are effective field theories describing a vector field with a vacuum expectation value that spontaneously breaks Lorentz symmetry. A bumblebee model is the simplest case of a theory with spontaneous Lorentz symmetry breaking.

In general relativity, the Hamilton–Jacobi–Einstein equation (HJEE) or Einstein–Hamilton–Jacobi equation (EHJE) is an equation in the Hamiltonian formulation of geometrodynamics in superspace, cast in the "geometrodynamics era" around the 1960s, by Asher Peres in 1962 and others. It is an attempt to reformulate general relativity in such a way that it resembles quantum theory within a semiclassical approximation, much like the correspondence between quantum mechanics and classical mechanics.

The Borde–Guth–Vilenkin (BGV) theorem is a theorem in physical cosmology which deduces that any universe that has, on average, been expanding throughout its history cannot be infinite in the past but must have a past spacetime boundary. It is named after the authors Arvind Borde, Alan Guth and Alexander Vilenkin, who developed its mathematical formulation in 2003. The BGV theorem is also popular outside physics, especially in religious and philosophical debates.

References

  1. Pfenning, Michael J.; Chaparas, S. D. (2001). "Quantum inequalities for the electromagnetic field". Physical Review D. 65 (2): 024009. arXiv: gr-qc/0107075 . Bibcode:2001PhRvD..65b4009P. doi:10.1103/PhysRevD.65.024009.
  2. Fewster, Christopher (2012). "Lectures on quantum energy inequalities". arXiv: 1208.5399 [gr-qc].
  3. Chu, Jennifer (July 1, 2021). "Physicists observationally confirm Hawking's black hole theorem for the first time". MIT News. Massachusetts Institute of Technology: 1. Retrieved December 9, 2024.
  4. Gururaj, Tejasri (November 23, 2024). "Extending classical black hole inequalities into the quantum realm". phys.org: 1. Retrieved December 9, 2024.
  5. Pfenning, Michael (June 23, 2015). "Quantum Inequalities and Particle Creation" (PDF). p. 8. Retrieved December 9, 2024.
  6. Ford, L.H. (July 30, 1997). "QUANTUM FIELD THEORY IN CURVED SPACETIME". Academic Article: 32. Retrieved December 9, 2024.
  7. Ford, Larry; Roman, Thomas (1995). "Averaged energy conditions and quantum inequalities". Physical Review D. 51 (8): 4277–4286. arXiv: gr-qc/9410043 . Bibcode:1995PhRvD..51.4277F. doi:10.1103/PhysRevD.51.4277. PMID   10018903. S2CID   7413835.
  8. Ford, Larry; Roman, Thomas (1997). "Restrictions on negative energy density in flat spacetime". Physical Review D. 55 (4): 2082. arXiv: gr-qc/9607003 . Bibcode:1997PhRvD..55.2082F. doi:10.1103/PhysRevD.55.2082. S2CID   14379955.
  9. Ford, Thomas (1999). "The quantum interest conjecture". Physical Review D. 60 (10): 104018. arXiv: gr-qc/9901074 . Bibcode:1999PhRvD..60j4018F. doi:10.1103/PhysRevD.60.104018. S2CID   12445154.
  10. Fewster, Christopher (2000). "A general worldline quantum inequality". Classical and Quantum Gravity. 17 (9): 1897–1911. arXiv: gr-qc/9910060 . Bibcode:2000CQGra..17.1897F. doi:10.1088/0264-9381/17/9/302. S2CID   250839579.
  11. Ford, Larry; Roman, Thomas (2013). "Negative energy seen by accelerated observers". Physical Review D. 87 (5): 085001. arXiv: 1302.2859 . Bibcode:2013PhRvD..87h5001F. doi:10.1103/PhysRevD.87.085001. S2CID   119293793.
  12. Pfenning, Michael (June 23, 2015). "Quantum Inequalities and Particle Creation" (PDF). p. 8. Retrieved December 9, 2024.
  13. Pfenning, Michael J. (2001). "Quantum inequalities for the electromagnetic field". Physical Review D. 65 (2): 024009. arXiv: gr-qc/0107075 . Bibcode:2001PhRvD..65b4009P. doi:10.1103/PhysRevD.65.024009.
  14. Flanagan, Éanna É. (November 14, 2002). "Quantum inequalities in two dimensional curved spacetimes". Physical Review D. 66 (10): 104007. arXiv: gr-qc/0208066 . Bibcode:2002PhRvD..66j4007F. doi:10.1103/PhysRevD.66.104007. ISSN   0556-2821.
  15. Fewster, Chris (August 28, 2012). "Lectures on quantum energy inequalities". Academic Article (August 28, 2012): 50. arXiv: 1208.5399 .
  16. Verch, Reiner (December 17, 2003). "Quantum Inequalities in Quantum Mechanics". Academic Article: 50. arXiv: math-ph/0312046 . Bibcode:2003math.ph..12046E.
  17. Hollands, Stefan (April 29, 2005). "Quantum Energy Inequalities in two-dimensional conformal field theory". Academic Article. 17 (February 7, 2008): 577–612. arXiv: math-ph/0412028 . Bibcode:2005RvMaP..17..577F. doi:10.1142/S0129055X05002406.