Quantum optical coherence tomography

Last updated

Quantum optical coherence tomography (Q-OCT) is an imaging technique that uses nonclassical (quantum) light sources to generate high-resolution images based on the Hong-Ou-Mandel effect (HOM). [1] Q-OCT is similar to conventional OCT but uses a fourth-order interferometer that incorporates two photodetectors rather than a second-order interferometer with a single photodetector. [2] The primary advantage of Q-OCT over OCT is insensitivity to even-order dispersion in multi-layered and scattering media. [3] [4] [5]

Contents

Several quantum sources of light have been developed so far. An example of such nonclassical sources is spontaneous parametric down-conversion that generates entangled photon pairs (twin-photon). [6] The entangled photons are emitted in pairs and have stronger-than-classical temporal and spatial correlations. The entangled photons are anti-correlated in frequencies and directions. However, the nonclassical light sources are expensive and limited, several quantum-mimetic light sources are developed by classical light and nonlinear optics, which mimic dispersion cancellation and unique additional benefits. [7]

Theory

The principle of Q-OCT is fourth-order interferometry. The optical setup is based on a Hong ou Mandel (HOM) interferometer with a nonclassical light source. Twin photons travel into and recombined from reference and sample arm and the coincidence rate is measured with time delay. [8]

Hong-Ou-Mandel interferometer Quantum optical coherence interferometer.png
Hong-Ou-Mandel interferometer

The nonlinear crystal is pumped by a laser and generates photon pairs with anti-correlation in frequency. One photon travels through the sample and the other through a delay time before the interferometer. The photon-coincidence rate at the output ports of the beam splitter is measure as a function of length difference () by a pair of single-photon-counting detectors and a coincidence counter.

Due to the quantum destructive interference, both photons emerge from the same port when the optical path lengths are equal. The coincidence rate has a sharp dip when the optical path length difference is zero. Such dips are used to monitor the reflectance of the sample as a function of depth. [9]

The twin-photon source is characterized by the frequency-entangled state:

where is the angular frequency deviation about the central angular frequency of the twin-photon wave packet, is the spectral probability amplitude.

A reflecting sample is described by a transfer function:

where is the complex reflection coefficient from depth ,

The coincidence rate is then given by

A-scan plot of the quantum optical coherence tomography QOCT coincidence rate.png
A-scan plot of the quantum optical coherence tomography

where

,

and

represent the constant (self-interference) and varying contributions (cross-interference). [10]

Dips in the coincidence rate plot arise from reflections from each of the two surfaces. When two photons have equal overall path lengths, the destructive interference of the two photon-pair probability amplitude occurs.

Advantages

Compared with conventional OCT, Q-OCT has several advantages:

Applications

Similar to FD-OCT, Q-OCT can provide 3D imaging of biological samples with a better resolution due to the photon entanglement. [15] Q-OCT permits a direct determination of the group-velocity dispersion (GVD) coefficients of the media. [16] The development of quantum-mimetic light sources offers unique additional benefits to quantum imaging, such as enhanced signal-to-noise ratio, better resolution, and acquisition rate. Although Q-OCT is not expected to replace OCT, it does offer some advantages as a biological imaging paradigm.

Related Research Articles

Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. At all scales where measurements have been practical, matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave.

In physics, coherence expresses the potential for two waves to interfere. Two monochromatic beams from a single source always interfere. Physical sources are not strictly monochromatic: they may be partly coherent. Beams from different sources are mutually incoherent.

<span class="mw-page-title-main">Polaron</span> Quasiparticle in condensed matter physics

A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.

<span class="mw-page-title-main">Squeezed coherent state</span> Type of quantum state

In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude and in the mode of a light wave. The product of the standard deviations of two such operators obeys the uncertainty principle:

Resolved sideband cooling is a laser cooling technique allowing cooling of tightly bound atoms and ions beyond the Doppler cooling limit, potentially to their motional ground state. Aside from the curiosity of having a particle at zero point energy, such preparation of a particle in a definite state with high probability (initialization) is an essential part of state manipulation experiments in quantum optics and quantum computing.

<span class="mw-page-title-main">Nonlinear Schrödinger equation</span> Nonlinear form of the Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

In physics, the Hanbury Brown and Twiss (HBT) effect is any of a variety of correlation and anti-correlation effects in the intensities received by two detectors from a beam of particles. HBT effects can generally be attributed to the wave–particle duality of the beam, and the results of a given experiment depend on whether the beam is composed of fermions or bosons. Devices which use the effect are commonly called intensity interferometers and were originally used in astronomy, although they are also heavily used in the field of quantum optics.

<span class="mw-page-title-main">Quantum tomography</span> Reconstruction of quantum states based on measurements

Quantum tomography or quantum state tomography is the process by which a quantum state is reconstructed using measurements on an ensemble of identical quantum states. The source of these states may be any device or system which prepares quantum states either consistently into quantum pure states or otherwise into general mixed states. To be able to uniquely identify the state, the measurements must be tomographically complete. That is, the measured operators must form an operator basis on the Hilbert space of the system, providing all the information about the state. Such a set of observations is sometimes called a quorum. The term tomography was first used in the quantum physics literature in a 1993 paper introducing experimental optical homodyne tomography.

<span class="mw-page-title-main">Optical parametric oscillator</span>

An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave with frequency into two output waves of lower frequency by means of second-order nonlinear optical interaction. The sum of the output waves' frequencies is equal to the input wave frequency: . For historical reasons, the two output waves are called "signal" and "idler", where the output wave with higher frequency is the "signal". A special case is the degenerate OPO, when the output frequency is one-half the pump frequency, , which can result in half-harmonic generation when signal and idler have the same polarization.

Time-bin encoding is a technique used in quantum information science to encode a qubit of information on a photon. Quantum information science makes use of qubits as a basic resource similar to bits in classical computing. Qubits are any two-level quantum mechanical system; there are many different physical implementations of qubits, one of which is time-bin encoding.

In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.

Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.

Laser linewidth is the spectral linewidth of a laser beam.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

Ramsey interferometry, also known as the separated oscillating fields method, is a form of particle interferometry that uses the phenomenon of magnetic resonance to measure transition frequencies of particles. It was developed in 1949 by Norman Ramsey, who built upon the ideas of his mentor, Isidor Isaac Rabi, who initially developed a technique for measuring particle transition frequencies. Ramsey's method is used today in atomic clocks and in the SI definition of the second. Most precision atomic measurements, such as modern atom interferometers and quantum logic gates, have a Ramsey-type configuration. A more modern method, known as Ramsey–Bordé interferometry uses a Ramsey configuration and was developed by French physicist Christian Bordé and is known as the Ramsey–Bordé interferometer. Bordé's main idea was to use atomic recoil to create a beam splitter of different geometries for an atom-wave. The Ramsey–Bordé interferometer specifically uses two pairs of counter-propagating interaction waves, and another method named the "photon-echo" uses two co-propagating pairs of interaction waves.

Boson sampling is a restricted model of non-universal quantum computation introduced by Scott Aaronson and Alex Arkhipov after the original work of Lidror Troyansky and Naftali Tishby, that explored possible usage of boson scattering to evaluate expectation values of permanents of matrices. The model consists of sampling from the probability distribution of identical bosons scattered by a linear interferometer. Although the problem is well defined for any bosonic particles, its photonic version is currently considered as the most promising platform for a scalable implementation of a boson sampling device, which makes it a non-universal approach to linear optical quantum computing. Moreover, while not universal, the boson sampling scheme is strongly believed to implement computing tasks which are hard to implement with classical computers by using far fewer physical resources than a full linear-optical quantum computing setup. This advantage makes it an ideal candidate for demonstrating the power of quantum computation in the near term.

<span class="mw-page-title-main">Cavity optomechanics</span>

Cavity optomechanics is a branch of physics which focuses on the interaction between light and mechanical objects on low-energy scales. It is a cross field of optics, quantum optics, solid-state physics and materials science. The motivation for research on cavity optomechanics comes from fundamental effects of quantum theory and gravity, as well as technological applications.

The numerical models of lasers and the most of nonlinear optical systems stem from Maxwell–Bloch equations (MBE). This full set of Partial Differential Equations includes Maxwell equations for electromagnetic field and semiclassical equations of the two-level atoms. For this reason the simplified theoretical approaches were developed for numerical simulation of laser beams formation and their propagation since the early years of laser era. The Slowly varying envelope approximation of MBE follows from the standard nonlinear wave equation with nonlinear polarization as a source:

<span class="mw-page-title-main">Malvin Carl Teich</span> Physicist

Malvin Carl Teich is an American electrical engineer, physicist, and computational neuroscientist which is professor emeritus of electrical engineering at Columbia University and physics at Boston University. He is also a consultant to government, academia, and private industry, where he serves as an advisor in intellectual-property conflicts. He is the coauthor of Fundamentals of Photonics, and of Fractal-Based Point Processes.

<span class="mw-page-title-main">Phonon polariton</span> Quasiparticle form phonon and photon coupling

In condensed matter physics, a phonon polariton is a type of quasiparticle that can form in a diatomic ionic crystal due to coupling of transverse optical phonons and photons. They are particular type of polariton, which behave like bosons. Phonon polaritons occur in the region where the wavelength and energy of phonons and photons are similar, as to adhere to the avoided crossing principle.

References

  1. Hong, C. K.; Ou, Z. Y.; Mandel, L. (1987-11-02). "Measurement of subpicosecond time intervals between two photons by interference". Physical Review Letters. 59 (18): 2044–2046. Bibcode:1987PhRvL..59.2044H. doi:10.1103/PhysRevLett.59.2044. PMID   10035403.
  2. Gilgen, H. H.; Novak, R. P.; Salathe, R. P.; Hodel, W.; Beaud, P. (August 1989). "Submillimeter optical reflectometry". Journal of Lightwave Technology. 7 (8): 1225–1233. Bibcode:1989JLwT....7.1225G. doi:10.1109/50.32387. ISSN   1558-2213.
  3. Franson, J. D. (1992-03-01). "Nonlocal cancellation of dispersion". Physical Review A. 45 (5): 3126–3132. Bibcode:1992PhRvA..45.3126F. doi:10.1103/PhysRevA.45.3126. PMID   9907348. S2CID   36542368.
  4. Steinberg, A. M.; Kwiat, P. G.; Chiao, R. Y. (1993-08-02). "Measurement of the single-photon tunneling time". Physical Review Letters. 71 (5): 708–711. Bibcode:1993PhRvL..71..708S. doi:10.1103/PhysRevLett.71.708. PMID   10055346. S2CID   31009201.
  5. Larchuk, Todd S.; Teich, Malvin C.; Saleh, Bahaa E. A. (1995-11-01). "Nonlocal cancellation of dispersive broadening in Mach-Zehnder interferometers". Physical Review A. 52 (5): 4145–4154. Bibcode:1995PhRvA..52.4145L. doi:10.1103/PhysRevA.52.4145. PMID   9912731.
  6. Klyshko, D. N. (1988-01-01). Photons Nonlinear Optics. CRC Press. ISBN   978-2-88124-669-2.
  7. Lavoie, J.; Kaltenbaek, R.; Resch, K. J. (2009-03-02). "Quantum-optical coherence tomography with classical light". Optics Express. 17 (5): 3818–3826. arXiv: 0909.0791 . Bibcode:2009OExpr..17.3818L. doi: 10.1364/OE.17.003818 . PMID   19259223. S2CID   8115209.
  8. Teich, Malvin Carl; Saleh, Bahaa E. A.; Wong, Franco N. C.; Shapiro, Jeffrey H. (2012-08-01). "Variations on the theme of quantum optical coherence tomography: a review". Quantum Information Processing. 11 (4): 903–923. doi:10.1007/s11128-011-0266-6. S2CID   254985458.
  9. Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2003-08-22). "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography". Physical Review Letters. 91 (8): 083601. arXiv: quant-ph/0304160 . Bibcode:2003PhRvL..91h3601N. doi:10.1103/PhysRevLett.91.083601. PMID   14525237. S2CID   7206765 . Retrieved 2021-04-14.
  10. Abouraddy, Ayman F.; Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2002-05-08). "Quantum-optical coherence tomography with dispersion cancellation". Physical Review A. 65 (5): 053817. arXiv: quant-ph/0111140 . Bibcode:2002PhRvA..65e3817A. doi:10.1103/PhysRevA.65.053817. S2CID   15047941.
  11. Abouraddy, Ayman F.; Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2002-05-08). "Quantum-optical coherence tomography with dispersion cancellation". Physical Review A. 65 (5): 053817. arXiv: quant-ph/0111140 . Bibcode:2002PhRvA..65e3817A. doi:10.1103/PhysRevA.65.053817. S2CID   15047941.
  12. "Quantum optical coherence tomography data collection apparatus and method for processing therefor". 2002-11-26.
  13. Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2003-08-22). "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography". Physical Review Letters. 91 (8): 083601. arXiv: quant-ph/0304160 . Bibcode:2003PhRvL..91h3601N. doi:10.1103/PhysRevLett.91.083601. PMID   14525237. S2CID   7206765.
  14. Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2004-04-05). "Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography". Optics Express. 12 (7): 1353–1362. Bibcode:2004OExpr..12.1353N. doi: 10.1364/OPEX.12.001353 . PMID   19474956.
  15. Nasr, Magued B.; Goode, Darryl P.; Nguyen, Nam; Rong, Guoxin; Yang, Linglu; Reinhard, Björn M.; Saleh, Bahaa E.A.; Teich, Malvin C. (2009-03-15). "Quantum optical coherence tomography of a biological sample". Optics Communications. 282 (6): 1154–1159. arXiv: 0809.4721 . Bibcode:2009OptCo.282.1154N. doi:10.1016/j.optcom.2008.11.061. S2CID   931548.
  16. Nasr, Magued B.; Saleh, Bahaa E. A.; Sergienko, Alexander V.; Teich, Malvin C. (2004-04-05). "Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography". Optics Express. 12 (7): 1353–1362. Bibcode:2004OExpr..12.1353N. doi: 10.1364/OPEX.12.001353 . PMID   19474956.