Quantum robotics is an interdisciplinary field that investigates the intersection of robotics and quantum mechanics. This field, in particular, explores the applications of quantum phenomena such as quantum entanglement within the realm of robotics. Examples of its applications include quantum communication in multi-agent cooperative robotic scenarios, the use of quantum algorithms in performing robotics tasks, and the integration of quantum devices (e.g., quantum detectors) in robotic systems. [1] [2] [3] [4] [5] [6] [7]
The free-space quantum communication between mobile platforms was proposed for reconfigurable Quantum Key Distribution (QKD) applications using drones [8] in 2017. This technology was later advanced in various aspects in mobile drone and vehicle platforms in several configurations such as drone-to-drone, drone-to-moving vehicle, and vehicle-to-vehicle systems [9] [10] [11] .Communication system technology for demonstration of BB84 quantum key distribution in optical aircraft downlinks. [12] Airborne demonstration of a quantum key distribution receiver payload. [12] [13] . Communication system technology for demonstration of BB84 quantum key distribution in optical aircraft downlinks. [14]
Other researchers contributed to low size, weight and power quantum key distribution system for small form unmanned aerial vehicles [15] ., characterization of a polarization-based receiver for mobile free space optical QKD [16] ., and optical-relayed entanglement distribution using drones as mobile nodes. [17] The topic of free-space quantum communication between mobile platforms, which was initially implemented to fulfill the need for free-space QKD and entanglement distribution using mobile nodes, was brought into robotics domain as an emerging interdisciplinary mechatronics topic to investigate and explore the interface between the quantum technologies and robotic systems domain. [1] [2] [3] [4] [5] [7] The main advantage of such integrated technology being the guaranteed security in communication between multiagent and cooperative autonomous systems. Although as a newfound emerging area, other benefits are anticipated in the future research by accessing the fast-growing and forthcoming quantum advantages. However, such progress can only be made after a foundation is laid out in what is referred to as “quantum robotics” and “quantum mechatronics”. [1] [2] [3] [4] [5] [7] The paper contributes to providing the complementary background needed for the research in integrating free-space quantum communication into the robotics field. Other contributions include modernizing the mechatronics discipline with quantum engineering for educational purposes which was initially proposed in. [1] [2] [3] [4] [5] [7] This paper further introduces quantum engineering topics needed in training and preparing the future engineering workforce to succeed in the rapid-paced ever-changing industry. In particular, the topics on the quantum mechanics fundamentals such as quantum entanglement, cryptography, teleportation, as well and the Bell test, are proposed which are suitable for engineering curriculum and University projects.
In the realm of quantum mechanics, the names Alice and Bob are frequently employed to illustrate various phenomena, protocols, and applications. These include their roles in quantum cryptography, quantum key distribution, quantum entanglement, and quantum teleportation. The terms "Alice Robot" and "Bob Robot" [1] [2] [3] [4] [5] [7] serve as analogous expressions that merge the concepts of Alice and Bob from quantum mechanics with mechatronic mobile platforms (such as robots, drones, and autonomous vehicles). For example, the Alice Robot functions as a transmitter platform that communicates with the Bob Robot, housing the receiving detectors.
The schematic representation of the experimental setup for achieving quantum entanglement through the spontaneous parametric down-conversion process is shown in the figure.
The experimental setup that includes the laser source, and Alice and Bob is shown in the figure below.
The Alice and Bob and the corresponding components.
The schematic representation of the Alice and Bob robots when sharing entangled photons in a quantum communication or quantum key distribution experimental setup between moving robotic platforms is shown in the figure.
The nomenclature used in the figure:
AL: Alignment Laser
DMSP: Shortpass dichroic mirror
FSM: Fast steering mirror
FFC: Fixed focus collimator
HWP: Half-wave plate
M: Mirror
MTC: Motion tracking camera
MTC & M: Motion tracking camera and mirror
NBF: Narrowband filter
NPBS: Non-Polarizing beamsplitter cube (50:50)
PABBO: Paired Barium borate (BBO) Crystal (Type I SPDC crystals)
PBS: Polarizing beamsplitter cube
PSD: Position sensing detector
QP: Quartz plate
QRC: QR code
SL: Source Laser
SPCM: Single photon counter module
Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of Von Neumann entropy and the general computational term.
Quantum key distribution (QKD) is a secure communication method that implements a cryptographic protocol involving components of quantum mechanics. It enables two parties to produce a shared random secret key known only to them, which then can be used to encrypt and decrypt messages. The process of quantum key distribution is not to be confused with quantum cryptography, as it is the best-known example of a quantum-cryptographic task.
Alice and Bob are fictional characters commonly used as placeholders in discussions about cryptographic systems and protocols, and in other science and engineering literature where there are several participants in a thought experiment. The Alice and Bob characters were invented by Ron Rivest, Adi Shamir, and Leonard Adleman in their 1978 paper "A Method for Obtaining Digital Signatures and Public-key Cryptosystems". Subsequently, they have become common archetypes in many scientific and engineering fields, such as quantum cryptography, game theory and physics. As the use of Alice and Bob became more widespread, additional characters were added, sometimes each with a particular meaning. These characters do not have to refer to people; they refer to generic agents which might be different computers or even different programs running on a single computer.
In quantum information science, the Bell's states or EPR pairs are specific quantum states of two qubits that represent the simplest examples of quantum entanglement. The Bell's states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particles being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will "collapse" it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will "collapse" the other qubit to a state whose measurement will yield one of two possible values, where the value depends on which Bell's state the two qubits are in initially. Bell's states can be generalized to certain quantum states of multi-qubit systems, such as the GHZ state for three or more subsystems.
In electrical engineering, homodyne detection is a method of extracting information encoded as modulation of the phase and/or frequency of an oscillating signal, by comparing that signal with a standard oscillation that would be identical to the signal if it carried null information. "Homodyne" signifies a single frequency, in contrast to the dual frequencies employed in heterodyne detection.
Quantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a machine able to perform quantum circuits on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.
John G. Rarity is a British physicist who is professor of optical communication systems in the department of electrical and electronic engineering at the University of Bristol, a post he has held since 1 January 2003. He is an international expert on quantum optics, quantum cryptography and quantum communication using single photons and entanglement. Rarity is a member of the Quantum Computation and Information group and quantum photonics at the University of Bristol.
BB84 is a quantum key distribution scheme developed by Charles Bennett and Gilles Brassard in 1984. It is the first quantum cryptography protocol. The protocol is provably secure assuming a perfect implementation, relying on two conditions: (1) the quantum property that information gain is only possible at the expense of disturbing the signal if the two states one is trying to distinguish are not orthogonal ; and (2) the existence of an authenticated public classical channel. It is usually explained as a method of securely communicating a private key from one party to another for use in one-time pad encryption. The proof of BB84 depends on a perfect implementation. Side channel attacks exist, taking advantage of non-quantum sources of information. Since this information is non-quantum, it can be intercepted without measuring or cloning quantum particles.
In quantum information theory, the channel-state duality refers to the correspondence between quantum channels and quantum states. Phrased differently, the duality is the isomorphism between completely positive maps (channels) from A to Cn×n, where A is a C*-algebra and Cn×n denotes the n×n complex entries, and positive linear functionals (states) on the tensor product
SARG04 is a 2004 quantum cryptography protocol derived from the first protocol of that kind, BB84.
Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution, which offers an information-theoretically secure solution to the key exchange problem. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical communication. For example, it is impossible to copy data encoded in a quantum state. If one attempts to read the encoded data, the quantum state will be changed due to wave function collapse. This could be used to detect eavesdropping in quantum key distribution (QKD).
The noisy-storage model refers to a cryptographic model employed in quantum cryptography. It assumes that the quantum memory device of an attacker (adversary) trying to break the protocol is imperfect (noisy). The main goal of this model is to enable the secure implementation of two-party cryptographic primitives, such as bit commitment, oblivious transfer and secure identification.
Within quantum cryptography, the Decoy state quantum key distribution (QKD) protocol is the most widely implemented QKD scheme. Practical QKD systems use multi-photon sources, in contrast to the standard BB84 protocol, making them susceptible to photon number splitting (PNS) attacks. This would significantly limit the secure transmission rate or the maximum channel length in practical QKD systems. In decoy state technique, this fundamental weakness of practical QKD systems is addressed by using multiple intensity levels at the transmitter's source, i.e. qubits are transmitted by Alice using randomly chosen intensity levels, resulting in varying photon number statistics throughout the channel. At the end of the transmission Alice announces publicly which intensity level has been used for the transmission of each qubit. A successful PNS attack requires maintaining the bit error rate (BER) at the receiver's end, which can not be accomplished with multiple photon number statistics. By monitoring BERs associated with each intensity level, the two legitimate parties will be able to detect a PNS attack, with highly increased secure transmission rates or maximum channel lengths, making QKD systems suitable for practical applications.
A self-powered dynamic system is defined as a dynamic system powered by its own excessive kinetic energy, renewable energy or a combination of both. The particular area of work is the concept of fully or partially self-powered dynamic systems requiring zero or reduced external energy inputs. The exploited technologies are particularly associated with self-powered sensors, regenerative actuators, human powered devices, and dynamic systems powered by renewable resources as self-sustained systems. Various strategies can be employed to improve the design of a self-powered system and among them adopting a bio-inspired design is investigated to demonstrate the advantage of biomimetics in improving power density.
The three-stage quantum cryptography protocol, also known as Kak's three-stage protocol is a method of data encryption that uses random polarization rotations by both Alice and Bob, the two authenticated parties, that was proposed by Subhash Kak. In principle, this method can be used for continuous, unbreakable encryption of data if single photons are used. It is different from methods of QKD for it can be used for direct encryption of data, although it could also be used for exchanging keys.
Quantum Experiments at Space Scale, is a Chinese research project in the field of quantum physics. QUESS was launched on 15 August 2016.
The six-state protocol (SSP) is the quantum cryptography protocol that is the version of BB84 that uses a six-state polarization scheme on three orthogonal bases.
The DARPA Quantum Network (2002–2007) was the world's first quantum key distribution (QKD) network, operating 10 optical nodes across Boston and Cambridge, Massachusetts. It became fully operational on October 23, 2003 in BBN's laboratories, and in June 2004 was fielded through dark fiber under the streets of Cambridge and Boston, where it ran continuously for over 3 years. The project also created and fielded the world's first superconducting nanowire single-photon detector. It was sponsored by DARPA as part of the QuIST program, and built and operated by BBN Technologies in close collaboration with colleagues at Harvard University and the Boston University Photonics Center.
BBM92 is a quantum key distribution without Bell's theorem developed using polarized entangled photon pairs by Charles H. Bennett, Gilles Brassard and N. David Mermin in 1992. It is named after the trio's surnames as. It uses decoy state of multiple photon instead of single. The key differences in E91 protocol and B92 uses only two states instead of four states used by E91 protocol and BB84
{{cite journal}}
: Cite journal requires |journal=
(help){{cite web}}
: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)