Quasi-phase-matching

Last updated

Quasi-phase-matching is a technique in nonlinear optics which allows a positive net flow of energy from the pump frequency to the signal and idler frequencies by creating a periodic structure in the nonlinear medium. Momentum is conserved, as is necessary for phase-matching, through an additional momentum contribution corresponding to the wavevector of the periodic structure. Consequently, in principle any three-wave mixing process that satisfies energy conservation can be phase-matched. For example, all the optical frequencies involved can be collinear, can have the same polarization, and travel through the medium in arbitrary directions. This allows one to use the largest nonlinear coefficient of the material in the nonlinear interaction. [1] [2]

Contents

Quasi-phase-matching ensures that there is positive energy flow from the pump frequency to signal and idler frequencies even though all the frequencies involved are not phase locked with each other. Energy will always flow from pump to signal as long as the phase between the two optical waves is less than 180 degrees. Beyond 180 degrees, energy flows back from the signal to the pump frequencies. The coherence length is the length of the medium in which the phase of pump and the sum of idler and signal frequencies are 180 degrees from each other. At each coherence length the crystal axes are flipped which allows the energy to continue to positively flow from the pump to the signal and idler frequencies.

The most commonly used technique for creating quasi-phase-matched crystals has been periodic poling. [3] A popular material choice for this is lithium niobate. [4] [5] [6] More recently, continuous phase control over the local nonlinearity was achieved using nonlinear metasurfaces with homogeneous linear optical properties but spatially varying effective nonlinear polarizability. [7] [8] [9] Optical fields are strongly confined within or surround the nanostructures, nonlinear interactions can therefore be realized with an ultra-small area down to 10 nm to 100 nm and can be scattered in all directions to produce more frequencies. [10] [11] Thus, relaxed phase matching can be achieved at the nanoscale dimension. [12]

Mathematical description

In nonlinear optics, the generation of other frequencies is the result of the nonlinear polarization response of the crystal due to fundamental pump frequency. When the crystal axis is flipped, the polarization wave is shifted by 180°, thus ensuring that there is a positive energy flow to the signal and idler beam. In the case of sum-frequency generation, polarization equation can be expressed by

where is the nonlinear susceptibility coefficient, in which the sign of the coefficient is flipped when the crystal axis is flipped, and represents the imaginary unit.

Development of signal amplitude

[ citation needed ]

The following mathematical description assumes a constant pump amplitude. The signal wavelength can be expressed as a sum over the number of domains that exist in the crystal. In general the rate of change of the signal amplitude is

where is the generated frequency amplitude and is the pump frequency amplitude and is the phase mismatch between the two optical waves. The refers to the nonlinear susceptibility of the crystal.

In the case of a periodically poled crystal the crystal axis is flipped by 180 degrees in every other domain, which changes the sign of . For the domain can be expressed as

where is the index of the poled domain. The total signal amplitude can be expressed as a sum

where is the spacing between poles in the crystal. The above equation integrates to

and reduces to

The summation yields

Multiply above equation both sides by a factor of

Adding both equation leads to the relation

Solving for gives

which leads to

The total intensity can be expressed by

For the case of the right part of the above equation is undefined so the limit needs to be taken when by invoking L'Hôpital's rule.

Which leads to the signal intensity

In order to allow different domain widths, i.e. , for , the above equation becomes

With the intensity becomes

This allows quasi-phase-matching to exist at different domain widths . From this equation it is apparent, however, that as the quasi-phase match order increases, the efficiency decreases by . For example, for 3rd order quasi-phase matching only a third of the crystal is effectively used for the generation of signal frequency, as a consequence the amplitude of the signal wavelength only third of the amount of amplitude for same length crystal for 1st order quasi-phase match.

Calculation of domain width

The domain width is calculated through the use of Sellmeier equation and using wavevector relations. In the case of DFG this relationship holds true , where are the pump, signal, and idler wavevectors, and . By calculating for the different frequencies, the domain width can be calculated from the relationship .

Orthogonal quasi-phase-matching

This method enables the generation of high-purity hyperentangled two-photon state. In orthogonal quasi-phase matching (OQPM), [13] a thin-layered crystal structure is combined with periodic poling along orthogonal directions. By combining periodic down-conversion of orthogonally polarized photons along with periodic poling that corrects the phase mismatch, the structure self corrects for longitudinal walkoff (delay) as it happens and before it accumulates. The superimposed spontaneous parametric downconversion (SPDC) radiation of the superlattice creates high-purity two-photon entangled state.

Related Research Articles

<span class="mw-page-title-main">Nonlinear optics</span> Branch of physics

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.

<span class="mw-page-title-main">Wavelength</span> Distance over which a waves shape repeats

In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings. Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). The term "wavelength" is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Thomson scattering</span> Low energy photon scattering off charged particles

Thomson scattering is the elastic scattering of electromagnetic radiation by a free charged particle, as described by classical electromagnetism. It is the low-energy limit of Compton scattering: the particle's kinetic energy and photon frequency do not change as a result of the scattering. This limit is valid as long as the photon energy is much smaller than the mass energy of the particle: , or equivalently, if the wavelength of the light is much greater than the Compton wavelength of the particle.

The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change is directly proportional to the square of the electric field instead of varying linearly with it. All materials show a Kerr effect, but certain liquids display it more strongly than others. The Kerr effect was discovered in 1875 by Scottish physicist John Kerr.

<span class="mw-page-title-main">String vibration</span> A wave

A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrating strings are the basis of string instruments such as guitars, cellos, and pianos.

<span class="mw-page-title-main">Gires–Tournois etalon</span>

In optics, a Gires–Tournois etalon is a transparent plate with two reflecting surfaces, one of which has very high reflectivity, ideally unity. Due to multiple-beam interference, light incident on a Gires–Tournois etalon is (almost) completely reflected, but has an effective phase shift that depends strongly on the wavelength of the light.

<span class="mw-page-title-main">High-resolution transmission electron microscopy</span>

High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. It is a powerful tool to study properties of materials on the atomic scale, such as semiconductors, metals, nanoparticles and sp2-bonded carbon. While this term is often also used to refer to high resolution scanning transmission electron microscopy, mostly in high angle annular dark field mode, this article describes mainly the imaging of an object by recording the two-dimensional spatial wave amplitude distribution in the image plane, similar to a "classic" light microscope. For disambiguation, the technique is also often referred to as phase contrast transmission electron microscopy, although this term is less appropriate. At present, the highest point resolution realised in high resolution transmission electron microscopy is around 0.5 ångströms (0.050 nm). At these small scales, individual atoms of a crystal and defects can be resolved. For 3-dimensional crystals, it is necessary to combine several views, taken from different angles, into a 3D map. This technique is called electron tomography.

In condensed matter physics and crystallography, the static structure factor is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns obtained in X-ray, electron and neutron diffraction experiments.

<span class="mw-page-title-main">Prony's method</span> Method to estimate the components of a signal

Prony analysis was developed by Gaspard Riche de Prony in 1795. However, practical use of the method awaited the digital computer. Similar to the Fourier transform, Prony's method extracts valuable information from a uniformly sampled signal and builds a series of damped complex exponentials or damped sinusoids. This allows the estimation of frequency, amplitude, phase and damping components of a signal.

<span class="mw-page-title-main">Second-harmonic generation</span> Nonlinear optical process

Second-harmonic generation (SHG), also known as frequency doubling, is the lowest-order wave-wave nonlinear interaction that occurs in various systems, including optical, radio, atmospheric, and magnetohydrodynamic systems. As a prototype behavior of waves, SHG is widely used, for example, in doubling laser frequencies. SHG was initially discovered as a nonlinear optical process in which two photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with twice the energy of the initial photons, that conserves the coherence of the excitation. It is a special case of sum-frequency generation (2 photons), and more generally of harmonic generation.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

<span class="mw-page-title-main">Laue equations</span> Equations describing diffraction in a crystal lattice

In crystallography and solid state physics, the Laue equations relate incoming waves to outgoing waves in the process of elastic scattering, where the photon energy or light temporal frequency does not change upon scattering by a crystal lattice. They are named after physicist Max von Laue (1879–1960).

Free spectral range (FSR) is the spacing in optical frequency or wavelength between two successive reflected or transmitted optical intensity maxima or minima of an interferometer or diffractive optical element.

The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis. It is named after Paul Scherrer. It is used in the determination of size of crystals in the form of powder.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

<span class="mw-page-title-main">Envelope (waves)</span> Smooth curve outlining the extremes of an oscillating signal

In physics and engineering, the envelope of an oscillating signal is a smooth curve outlining its extremes. The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a function of time, space, angle, or indeed of any variable.

In quantum computing, the quantum phase estimation algorithm is a quantum algorithm to estimate the phase corresponding to an eigenvalue of a given unitary operator. Because the eigenvalues of a unitary operator always have unit modulus, they are characterized by their phase, and therefore the algorithm can be equivalently described as retrieving either the phase or the eigenvalue itself. The algorithm was initially introduced by Alexei Kitaev in 1995.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

<span class="mw-page-title-main">Grating lobes</span>

For discrete aperture antennas in which the element spacing is greater than a half wavelength, a spatial aliasing effect allows plane waves incident to the array from visible angles other than the desired direction to be coherently added, causing grating lobes. Grating lobes are undesirable and identical to the main lobe. The perceived difference seen in the grating lobes is because of the radiation pattern of non-isotropic antenna elements, which effects main and grating lobes differently. For isotropic antenna elements, the main and grating lobes are identical.

References

  1. Hu, X. P.; Xu, P.; Zhu, S. N. (2013). "Engineered quasi-phase-matching for laser techniques [Invited]" (PDF). Photonics Research. 1 (4): 171. doi:10.1364/PRJ.1.000171. ISSN   2327-9125.
  2. Xu, P.; Zhu, S. N. (2012). "Review Article: Quasi-phase-matching engineering of entangled photons". AIP Advances. 2 (4): 041401. Bibcode:2012AIPA....2d1401X. doi: 10.1063/1.4773457 . ISSN   2158-3226.
  3. Paschotta, Rüdiger. "Quasi-phase matching." Encyclopedia of Laser Physics and Technology. Retrieved April 30, 2006
  4. Sun, Dehui; Zhang, Yunwu; Wang, Dongzhou; Song, Wei; Liu, Xiaoyan; Pang, Jinbo; Geng, Deqiang; Sang, Yuanhua; Liu, Hong (2020-12-10). "Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications". Light: Science & Applications. 9 (1): 197. doi:10.1038/s41377-020-00434-0. ISSN   2047-7538. PMC   7729400 . PMID   33303741.
  5. Hum, David S.; Fejer, Martin M. (2007-03-01). "Quasi-phasematching". Comptes Rendus Physique. Recent advances in crystal optics. 8 (2): 180–198. doi:10.1016/j.crhy.2006.10.022. ISSN   1631-0705.
  6. "42% efficient single-pass second-harmonic generation of continuous wave Nd:YAG laser output in 5.3-cm-length periodically poled lithium niobate | IEEE Conference Publication | IEEE Xplore". ieeexplore.ieee.org. doi:10.1109/cleo.1997.602238 . Retrieved 2023-12-05.
  7. Li, Guixin; Chen, Shumei; Pholchai, Nitipat; Reineke, Bernhard; Wong, Polis Wing Han; Pun, Edwin Yue Bun; Cheah, Kok Wai; Zentgraf, Thomas; Zhang, Shuang (2015). "Continuous control of the nonlinearity phase for harmonic generations". Nature Materials. 14 (6): 607–612. Bibcode:2015NatMa..14..607L. doi:10.1038/nmat4267. ISSN   1476-1122. PMID   25849530. S2CID   205411257.
  8. J. Lee (2014). "Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions". Nature. 511 (7507): 65–69. doi: 10.1038/nature13455 . S2CID   4466098.
  9. T. Huang (2020). "Planar nonlinear metasurface optics and their applications" (PDF). Reports on Progress in Physics. 83 (12): 126101–61. doi:10.1088/1361-6633/abb56e. PMID   33290268. S2CID   225340324.
  10. G. Rosolen (2018). "Metasurface-based multi-harmonic free-electron light source". Light: Science & Applications. 7: 64–70. doi: 10.1038/s41377-018-0065-2 . PMC   6143620 . PMID   30245811.
  11. G. Li (2017). "Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation". Nano Letters. 17 (12): 7974–7979. doi:10.1021/acs.nanolett.7b04451.
  12. L. Carletti (2018). "Giant nonlinear response at the nanoscale driven by bound states in the continuum". Physical Review Letters. 121 (3): 033903–09. doi:10.1103/PhysRevLett.121.033903. hdl: 1885/160465 . S2CID   51940608.
  13. Hegazy, Salem F.; Obayya, Salah S. A.; Saleh, Bahaa E. A. (December 2017). "Orthogonal quasi-phase-matched superlattice for generation of hyperentangled photons". Scientific Reports. 7 (1): 4169. doi:10.1038/s41598-017-03023-1. ISSN   2045-2322. PMC   5482903 . PMID   28646199.