Quiescent centre

Last updated

The quiescent centre is a group of cells, up to 1,000 in number, in the form of a hemisphere, with the flat face toward the root tip of vascular plants. [1] It is a region in the apical meristem of a root where cell division proceeds very slowly or not at all, but the cells are capable of resuming meristematic activity when the tissue surrounding them is damaged. Cells of root apical meristems do not all divide at the same rate. Determinations of relative rates of DNA synthesis show that primary roots of Zea , Vicia and Allium have quiescent centres to the meristems, in which the cells divide rarely or never in the course of normal root growth (Clowes, 1958). Such a quiescent centre includes the cells at the apices of the histogens of both stele and cortex. Its presence can be deduced from the anatomy of the apex in Zea (Clowes, 1958), but not in the other species which lack discrete histogens.

Contents

History

In 1953, during the course of analysing the organization and function of the root apices, Frederick Albert Lionel Clowes (born 10 September 1921), at the School of Botany (now Department of Plant Sciences), University of Oxford, proposed the term ‘cytogenerative centre’ to denote ‘the region of an apical meristem from which all future cells are derived’. This term had been suggested to him by Mr Harold K. Pusey, a lecturer in embryology at the Department of Zoology and Comparative Anatomy at the same university. The 1953 paper of Clowes reported results of his experiments on Fagus sylvatica and Vicia faba , in which small oblique and wedge-shaped excisions were made at the tip of the primary root, at the most distal level of the root body, near the boundary with the root cap. The results of these experiments were striking and showed that: the root which grew on following the excision was normal at the undamaged meristem side; the nonexcised meristem portion contributed to the regeneration of the excised portion; the regenerated part of the root had abnormal patterning and ‘remained so for a time considered sufficiently long for the complete replacement of all the derivatives of the initials’. The main conclusion from these experiments was that the root tissues originated from a promeristem which was considered to be ‘cytogenerative centre’, also called ‘cytogenetic centre’, ‘ontogenetic centre’, and ‘constructional centre’. Clowes indicated that the cytogenerative centre was a property of roots with broad columellas (i.e. of roots having an ‘open’ type of apical meristem, as was the case in the roots of the two species studied). He then wished to know whether the same property applied to thinner roots with narrow columellas (i.e. roots with a ‘closed’ type of meristem). Using roots of Zea mays and Triticum vulgare , this indeed turned out to be the case, and he was then able to state that ‘the cytogenerative centre is conceived as the part of the apical meristem from which all future tissues are derived’. We may infer that Clowes regarded the cytogenerative centre as a universal feature of roots because he used the term also with respect to the structure and function of the root meristem of conifers.

Related Research Articles

Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of regeneration, asexual reproduction, metamorphosis, and the growth and differentiation of stem cells in the adult organism.

<span class="mw-page-title-main">Root</span> Basal organ of a vascular plant

In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the surface of the soil, but roots can also be aerial or aerating, that is, growing up above the ground or especially above water.

<span class="mw-page-title-main">Tissue (biology)</span> Group of cells having similar appearance and performing the same function

In biology, tissue is a biological organizational level between cells and a complete organ. A tissue is an ensemble of similar cells and their extracellular matrix from the same origin that together carry out a specific function. Organs are then formed by the functional grouping together of multiple tissues.

<span class="mw-page-title-main">Meristem</span> Type of plant tissue involved in cell proliferation

The meristem is a type of tissue found in plants. It consists of undifferentiated cells capable of cell division. Cells in the meristem can develop into all the other tissues and organs that occur in plants. These cells continue to divide until a time when they get differentiated and then lose the ability to divide.

Apical means "pertaining to an apex". It may refer to:

<span class="mw-page-title-main">Vegetative reproduction</span> Asexual method of reproduction in plants

Vegetative reproduction is any form of asexual reproduction occurring in plants in which a new plant grows from a fragment or cutting of the parent plant or specialized reproductive structures, which are sometimes called vegetative propagules.

<span class="mw-page-title-main">Auxin</span> Plant hormone

Auxins are a class of plant hormones with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s. Kenneth V. Thimann became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937.

<span class="mw-page-title-main">Amyloplast</span> Type of plastid, double-enveloped organelles in plant cells

Amyloplasts are a type of plastid, double-enveloped organelles in plant cells that are involved in various biological pathways. Amyloplasts are specifically a type of leucoplast, a subcategory for colorless, non-pigment-containing plastids. Amyloplasts are found in roots and storage tissues and store and synthesize starch for the plant through the polymerization of glucose. Starch synthesis relies on the transportation of carbon from the cytosol, the mechanism by which is currently under debate.

<span class="mw-page-title-main">Apoplast</span> Extracellular space, outside the cell membranes of plants

Inside a plant, the apoplast can mean the space outside of cell membranes, where material can diffuse freely; that is, the extracellular spaces. Apoplast can also refer especially to the continuum of cell walls of adjacent cells; fluid and material flows occurring there or in any extacellular space are called apoplastic flow or apoplastic transport.

<span class="mw-page-title-main">Gravitropism</span>

Gravitropism is a coordinated process of differential growth by a plant in response to gravity pulling on it. It also occurs in fungi. Gravity can be either "artificial gravity" or natural gravity. It is a general feature of all higher and many lower plants as well as other organisms. Charles Darwin was one of the first to scientifically document that roots show positive gravitropism and stems show negative gravitropism. That is, roots grow in the direction of gravitational pull and stems grow in the opposite direction. This behavior can be easily demonstrated with any potted plant. When laid onto its side, the growing parts of the stem begin to display negative gravitropism, growing upwards. Herbaceous (non-woody) stems are capable of a degree of actual bending, but most of the redirected movement occurs as a consequence of root or stem growth outside. The mechanism is based on the Cholodny–Went model which was proposed in 1927, and has since been modified. Although the model has been criticized and continues to be refined, it has largely stood the test of time.

<span class="mw-page-title-main">Secondary growth</span> Type of growth in plants

In botany, secondary growth is the growth that results from cell division in the cambia or lateral meristems and that causes the stems and roots to thicken, while primary growth is growth that occurs as a result of cell division at the tips of stems and roots, causing them to elongate, and gives rise to primary tissue. Secondary growth occurs in most seed plants, but monocots usually lack secondary growth. If they do have secondary growth, it differs from the typical pattern of other seed plants.

<span class="mw-page-title-main">Primordium</span> Organ in the earliest recognizable stage of embryonic development

A primordium in embryology, is an organ or tissue in its earliest recognizable stage of development. Cells of the primordium are called primordial cells. A primordium is the simplest set of cells capable of triggering growth of the would-be organ and the initial foundation from which an organ is able to grow. In flowering plants, a floral primordium gives rise to a flower.

<span class="mw-page-title-main">Lateral root</span> Plant root

Lateral roots, emerging from the pericycle, extend horizontally from the primary root (radicle) and over time makeup the iconic branching pattern of root systems. They contribute to anchoring the plant securely into the soil, increasing water uptake, and facilitates the extraction of nutrients required for the growth and development of the plant. Lateral roots increase the surface area of a plant's root system and can be found in great abundance in several plant species. In some cases, lateral roots have been found to form symbiotic relationships with rhizobia (bacteria) and mycorrhizae (fungi) found in the soil, to further increase surface area and increase nutrient uptake.

<span class="mw-page-title-main">Plant morphology</span> Study of the structure of plants

Phytomorphology is the study of the physical form and external structure of plants. This is usually considered distinct from plant anatomy, which is the study of the internal structure of plants, especially at the microscopic level. Plant morphology is useful in the visual identification of plants. Recent studies in molecular biology started to investigate the molecular processes involved in determining the conservation and diversification of plant morphologies. In these studies transcriptome conservation patterns were found to mark crucial ontogenetic transitions during the plant life cycle which may result in evolutionary constraints limiting diversification.

This page provides a glossary of plant morphology. Botanists and other biologists who study plant morphology use a number of different terms to classify and identify plant organs and parts that can be observed using no more than a handheld magnifying lens. This page provides help in understanding the numerous other pages describing plants by their various taxa. The accompanying page—Plant morphology—provides an overview of the science of the external form of plants. There is also an alphabetical list: Glossary of botanical terms. In contrast, this page deals with botanical terms in a systematic manner, with some illustrations, and organized by plant anatomy and function in plant physiology.

Important structures in plant development are buds, shoots, roots, leaves, and flowers; plants produce these tissues and structures throughout their life from meristems located at the tips of organs, or between mature tissues. Thus, a living plant always has embryonic tissues. By contrast, an animal embryo will very early produce all of the body parts that it will ever have in its life. When the animal is born, it has all its body parts and from that point will only grow larger and more mature. However, both plants and animals pass through a phylotypic stage that evolved independently and that causes a developmental constraint limiting morphological diversification.

<span class="mw-page-title-main">Root cap</span> Type of tissue at the tip of a plant root

The root cap is a type of tissue at the tip of a plant root. It is also called calyptra. Root caps contain statocytes which are involved in gravity perception in plants. If the cap is carefully removed the root will grow randomly. The root cap protects the growing tip in plants. It secretes mucilage to ease the movement of the root through soil, and may also be involved in communication with the soil microbiota.

Plant tissue culture is a collection of techniques used to maintain or grow plant cells, tissues or organs under sterile conditions on a nutrient culture medium of known composition. It is widely used to produce clones of a plant in a method known as micropropagation. Different techniques in plant tissue culture may offer certain advantages over traditional methods of propagation, including:

<span class="mw-page-title-main">Columella (botany)</span> Axis of sterile tissue

Columella is an axis of sterile tissue which passes through the center of the spore-case of mosses. In fungi it refers to a centrally vacuolated part of a hypha, bearing spores. The word finds analogous usage in myxomycetes.

<span class="mw-page-title-main">Thorns, spines, and prickles</span> Hard, rigid extensions or modifications of leaves, roots, stems or buds with sharp, stiff ends

In plant morphology, thorns, spines, and prickles, and in general spinose structures, are hard, rigid extensions or modifications of leaves, roots, stems or buds with sharp, stiff ends, and generally serve the same function: physically deterring animals from eating the plant material.

References

  1. Clowes, F. a. L. (1 March 1958). "Development of Quiescent Centres in Root Meristems". New Phytologist. 57 (1): 85–88. doi: 10.1111/j.1469-8137.1958.tb05918.x . ISSN   1469-8137.

Sources