Quotition and partition

Last updated

In arithmetic, quotition and partition are two ways of viewing fractions and division. In quotitive division one asks "how many parts are there?" while in partitive division one asks "what is the size of each part?"

Contents

In general, a quotient where Q, N, and D are integers or rational numbers, can be conceived of in either of 2 ways:

  1. Quotition: "How many parts of size D must be added to get a sum of N?"
  2. Partition: "What is the size of each of D equal parts whose sum is N?"

For example, the quotient can be conceived of as representing either of the decompositions:

In the rational number system used in elementary mathematics, the numerical answer is always the same no matter which way you put it, as a consequence of the commutativity of multiplication.

Quotition

Thought of quotitively, a division problem can be solved by repeatedly subtracting groups of the size of the divisor. [1] For instance, suppose each egg carton fits 12 eggs, and the problem is to find how many cartons are needed to fit 36 eggs in total. Groups of 12 eggs at a time can be separated from the main pile until none are left, 3 groups:

If the last group is a remainder smaller than the divisor, it can be thought of as forming an additional smaller group. For example, if 45 eggs are to be put into 12-egg cartons, then after the first 3 cartons have been filled there are 9 eggs remaining, which only partially fill the 4th carton. The answer to the question "How many cartons are needed to fit 45 eggs?" is 4 cartons, since rounds up to 4.

Quotition is the concept of division most used in measurement. For example, measuring the length of a table using a measuring tape involves comparing the table to the markings on the tape. This is conceptually equivalent to dividing the length of the table by a unit of length, the distance between markings.

Partition

Thought of partitively, a division problem might be solved by sorting the initial quantity into a specific number of groups by adding items to each group in turn. For instance, a deck of 52 playing cards could be divided among 4 players by dealing the cards to into 4 piles one at a time, eventually yielding piles of 13 cards each.

If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since .

See also

Related Research Articles

In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.

<span class="mw-page-title-main">Square-free integer</span> Number without repeated prime factors

In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are

<span class="mw-page-title-main">Gaussian integer</span> Complex number whose real and imaginary parts are both integers

In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as or

<i>p</i>-adic number Number system extending the rational numbers

In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.

<span class="mw-page-title-main">Division (mathematics)</span> Arithmetic operation

Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient.

A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

<span class="mw-page-title-main">Capacitance</span> Ability of a body to store an electrical charge

Capacitance is the capability of a material object or device to store electric charge. It is measured by the charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related notions of capacitance: self capacitance and mutual capacitance. An object that can be electrically charged exhibits self capacitance, for which the electric potential is measured between the object and ground. Mutual capacitance is measured between two components, and is particularly important in the operation of the capacitor, an elementary linear electronic component designed to add capacitance to an electric circuit.

<span class="mw-page-title-main">Division by zero</span> Class of mathematical expression

In mathematics, division by zero, division where the divisor (denominator) is zero, is a unique and problematic special case. Using fraction notation, the general example can be written as , where is the dividend (numerator).

<span class="mw-page-title-main">Egyptian fraction</span> Finite sum of distinct unit fractions

An Egyptian fraction is a finite sum of distinct unit fractions, such as

In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field K. In this case, one speaks of a rational function and a rational fraction over K. The values of the variables may be taken in any field L containing K. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is L.

In geometry, a Heronian triangle is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84.

<span class="mw-page-title-main">Practical number</span> Number such that it and all smaller numbers may be represented as sums of its distinct divisors

In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another.

<span class="mw-page-title-main">Fraction</span> Ratio of two numbers

A fraction represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction consists of an integer numerator, displayed above a line, and a non-zero integer denominator, displayed below that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. For example, in the fraction 3/4, the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates 3/4 of a cake.

In mathematics, 0.999... is a notation for the repeating decimal consisting of an unending sequence of 9s after the decimal point. This repeating decimal is a numeral that represents the smallest number no less than every number in the sequence ; that is, the supremum of this sequence. This number is equal to 1. In other words, "0.999..." is not "almost exactly 1" or "very, very nearly but not quite 1"; rather, "0.999..." and "1" represent exactly the same number.

A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic ; if this sequence consists only of zeros, the decimal is said to be terminating, and is not considered as repeating. It can be shown that a number is rational if and only if its decimal representation is repeating or terminating. For example, the decimal representation of 1/3 becomes periodic just after the decimal point, repeating the single digit "3" forever, i.e. 0.333.... A more complicated example is 3227/555, whose decimal becomes periodic at the second digit following the decimal point and then repeats the sequence "144" forever, i.e. 5.8144144144.... Another example of this is 593/53, which becomes periodic after the decimal point, repeating the 13-digit pattern "1886792452830" forever, i.e. 11.18867924528301886792452830....

A hyperelliptic curve is a particular kind of algebraic curve. There exist hyperelliptic curves of every genus . If the genus of a hyperelliptic curve equals 1, we simply call the curve an elliptic curve. Hence we can see hyperelliptic curves as generalizations of elliptic curves. There is a well-known group structure on the set of points lying on an elliptic curve over some field , which we can describe geometrically with chords and tangents. Generalizing this group structure to the hyperelliptic case is not straightforward. We cannot define the same group law on the set of points lying on a hyperelliptic curve, instead a group structure can be defined on the so-called Jacobian of a hyperelliptic curve. The computations differ depending on the number of points at infinity. Imaginary hyperelliptic curves are hyperelliptic curves with exactly 1 point at infinity: real hyperelliptic curves have two points at infinity.

<span class="mw-page-title-main">Integer triangle</span> Triangle with integer side lengths

An integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles.

Petkovšek's algorithm is a computer algebra algorithm that computes a basis of hypergeometric terms solution of its input linear recurrence equation with polynomial coefficients. Equivalently, it computes a first order right factor of linear difference operators with polynomial coefficients. This algorithm was developed by Marko Petkovšek in his PhD-thesis 1992. The algorithm is implemented in all the major computer algebra systems.

References

  1. Solomon 2006.