R. Brent Tully

Last updated

Richard Brent Tully (born March 9, 1943) is a Canadian-born American astronomer at the Institute for Astronomy in Honolulu, Hawaii.

Contents

Born in Toronto, Ontario, and raised in Vancouver, British Columbia, Tully's specialty is the astrophysics of galaxies. With J. Richard Fisher, he proposed the Tully–Fisher relation, which shows that the luminosity of a galaxy and the orbital velocities of its stars are correlated. This relation can be used to determine the distances of galaxies and, by inference, the size and age of the universe. [1] His books The Nearby Galaxies Atlas & Catalog published in 1988 give the 3D locations for 2,400 galaxies within 130 million light years of Earth. A particularly remarkable discovery was that our Milky Way galaxy lies adjacent a vast underdense region that Tully called the Local Void. A more extended compilation of 30,000 galaxies within a cube of diameter 700 million light years centered on Earth can be visually navigated with the planetarium computer software Starry Night Pro, where the data is called the Tully Database.

Tully, along with colleagues Helene Courtois, Daniel Pomarede, and Yehuda Hoffman, have compiled and analyzed galaxy distances and deviations of galaxy motions from cosmic expansion within the Cosmicflows program. Noteworthy discoveries have been the full extent of our home supercluster of galaxies, given the name Laniakea Supercluster, and of the adjacent, very large South Pole Wall of galaxies. Cumulatively, the large scale structure in the distribution of matter in a volume of diameter 1.3 billion light years centered on our location mapped by Tully and his colleagues reasonably accounts for the motion of our Local Group of galaxies of over 600 kilometers/second although there remains the possibility of influences from even larger scales.

Brent Tully received numerous awards and recognitions, among which the Viktor Ambartsumian Prize and the Gruber Prize in Cosmology, both in 2014.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Supercluster</span> Large group of smaller galaxy clusters or galaxy groups

A supercluster is a large group of smaller galaxy clusters or galaxy groups; they are among the largest known structures in the universe. The Milky Way is part of the Local Group galaxy group, which in turn is part of the Virgo Supercluster, which is part of the Laniakea Supercluster. The large size and low density of superclusters means that they, unlike clusters, expand with the Hubble expansion. The number of superclusters in the observable universe is estimated to be 10 million.

The following is a timeline of galaxies, clusters of galaxies, and large-scale structure of the universe.

<span class="mw-page-title-main">Virgo Supercluster</span> Galactic supercluster containing the Virgo Cluster

The Virgo Supercluster or the Local Supercluster is a mass concentration of galaxies containing the Virgo Cluster and Local Group, which itself contains the Milky Way and Andromeda galaxies, as well as others. At least 100 galaxy groups and clusters are located within its diameter of 33 megaparsecs. The Virgo SC is one of about 10 million superclusters in the observable universe and is in the Pisces–Cetus Supercluster Complex, a galaxy filament.

<span class="mw-page-title-main">Observable universe</span> All matter that can be observed from the Earth at the present

The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. There may be 2 trillion galaxies in the observable universe, although that number was reduced in 2021 to only several hundred billion based on data from New Horizons. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer and is unique for every unique observational position.

<span class="mw-page-title-main">Tully–Fisher relation</span> Trend in astronomy

In astronomy, the Tully–Fisher relation (TFR) is an empirical relationship between the mass or intrinsic luminosity of a spiral galaxy and its asymptotic rotation velocity or emission line width. It was first published in 1977 by astronomers R. Brent Tully and J. Richard Fisher. The luminosity is calculated by multiplying the galaxy's apparent brightness by , where is its distance from us, and the spectral-line width is measured using long-slit spectroscopy.

<span class="mw-page-title-main">Coma Supercluster</span>

The Coma Supercluster is a nearby supercluster of galaxies comprising the Coma Cluster and the Leo Cluster.

The Shapley Supercluster or Shapley Concentration is the largest concentration of galaxies in our nearby universe that forms a gravitationally interacting unit, thereby pulling itself together instead of expanding with the universe. It appears as a striking overdensity in the distribution of galaxies in the constellation of Centaurus. It is 650 million light-years away (z=0.046).

<span class="mw-page-title-main">Pavo–Indus Supercluster</span> Neighboring supercluster in the constellations Pavo,Indus and Telescopium

The Pavo-Indus Supercluster is a neighboring supercluster located about 60–70 Mpc (196–228 Mly) away in the constellations of Pavo, Indus, and Telescopium. The supercluster contains three main clusters, Abell 3656, Abell 3698, and Abell 3742.

<span class="mw-page-title-main">Location of Earth</span> Knowledge of the location of Earth

Knowledge of the location of Earth has been shaped by 400 years of telescopic observations, and has expanded radically since the start of the 20th century. Initially, Earth was believed to be the center of the Universe, which consisted only of those planets visible with the naked eye and an outlying sphere of fixed stars. After the acceptance of the heliocentric model in the 17th century, observations by William Herschel and others showed that the Sun lay within a vast, disc-shaped galaxy of stars. By the 20th century, observations of spiral nebulae revealed that the Milky Way galaxy was one of billions in an expanding universe, grouped into clusters and superclusters. By the end of the 20th century, the overall structure of the visible universe was becoming clearer, with superclusters forming into a vast web of filaments and voids. Superclusters, filaments and voids are the largest coherent structures in the Universe that we can observe. At still larger scales the Universe becomes homogeneous, meaning that all its parts have on average the same density, composition and structure.

<span class="mw-page-title-main">Galaxy filament</span> Largest structures in the universe, made of galaxies

In cosmology, galaxy filaments are the largest known structures in the universe, consisting of walls of gravitationally bound galaxy superclusters. These massive, thread-like formations can reach 80 megaparsecs h−1 and form the boundaries between large voids.

The Pisces–Cetus Supercluster Complex is a galaxy filament. It includes the Laniakea Supercluster which contains the Virgo Supercluster lobe which in turn contains the Local Group, the galaxy cluster that includes the Milky Way. This filament is adjacent to the Perseus–Pegasus Filament.

<span class="mw-page-title-main">Laniakea Supercluster</span> Galaxy supercluster that is home to the Milky Way Galaxy and many more galaxies

The Laniakea Supercluster is the galaxy supercluster that is home to the Milky Way and approximately 100,000 other nearby galaxies. It was defined in September 2014, when a group of astronomers including R. Brent Tully of the University of Hawaiʻi, Hélène Courtois of the University of Lyon, Yehuda Hoffman of the Hebrew University of Jerusalem, and Daniel Pomarède of CEA Université Paris-Saclay published a new way of defining superclusters according to the relative velocities of galaxies. The new definition of the local supercluster subsumes the prior defined local supercluster, the Virgo Supercluster, as an appendage.

<span class="mw-page-title-main">NGC 4178</span> Barred spiral galaxy in the constellation Virgo

NGC 4178 is the New General Catalogue identifier for a barred spiral galaxy in the equatorial constellation of Virgo. It was discovered April 11, 1825 by English astronomer John Herschel. Located some 43.8 million light years away, this galaxy spans 2.3 × 0.4 arc minutes and is seen at a low angle, being inclined by 77° to the line of sight from the Earth. The morphological classification of NGC 4178 is SB(rs)dm, indicating that it has a bar feature at the core, and, per the '(rs)', has traces of a ring-like structure surrounding the bar. The 'dm' suffix indicates the spiral arms are diffuse, broken, and irregular in appearance with no bulge at the nucleus. This galaxy is a member of the Virgo Cluster, which is the richest nearby group of galaxies outside the Local Group and forms the core of the Virgo Supercluster.

<span class="mw-page-title-main">BOSS Great Wall</span> One of the largest superstructures in the observable universe

The BOSS Great Wall is a supercluster complex that was identified, using the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS), in early 2016. It was discovered by a research team from several institutions, consisting of: Hiedi Lietzen, Elmo Tempel, Lauri Juhan Liivamägi, Antonio Montero-Dorta, Maret Einasto, Alina Streblyanska, Claudia Maraston, Jose Alberto Rubiño-Martín and Enn Saar. The BOSS Great Wall is one of the largest superstructures in the observable universe, though there are even larger structures known.

<span class="mw-page-title-main">Hélène Courtois</span> French astrophysicist

Hélène Courtois is a French astrophysicist specialising in cosmography. She is a professor at the University of Lyon 1 and has been a chevalier of the Ordre des Palmes Académiques since 2015.

Daniel Pomarède is a staff scientist at the Institute of Research into the Fundamental Laws of the Universe, CEA Paris-Saclay University. He co-discovered Laniakea, a home supercluster of galaxies. Specialized in data visualization and cosmography, a branch of cosmology dedicated to mapping the Universe, he also co-authored the discoveries of the Dipole Repeller and of the Cold Spot Repeller, two large influential cosmic voids, and the discovery of the South Pole Wall, a large-scale structure located in the direction of the south celestial pole beyond the southern frontiers of Laniakea.

<span class="mw-page-title-main">South Pole Wall</span> Massive cosmic structure

The South Pole Wall is a massive cosmic structure formed by a giant wall of galaxies that extends across at least 1.37 billion light-years of space, the nearest light of which is aged about half a billion light-years. The structure, in its astronomical angle, is dense in five known places including one very near to the celestial South Pole and is, according to the international team of astronomers that discovered the South Pole Wall, "...the largest contiguous feature in the local volume and comparable to the Sloan Great Wall at half the distance ...". Its discovery was announced by Daniel Pomarède of Paris-Saclay University and R. Brent Tully and colleagues of the University of Hawaiʻi in July 2020. Pomarède explained, "One might wonder how such a large and not-so distant structure remained unnoticed. This is due to its location in a region of the sky that has not been completely surveyed, and where direct observations are hindered by foreground patches of galactic dust and clouds. We have found it thanks to its gravitational influence, imprinted in the velocities of a sample of galaxies".

The Telescopium−Grus Cloud is a galaxy filament in the constellations of Pavo, Indus, and Telescopium. It was first defined by astronomer Brent Tully in his book The Nearby Galaxies Atlas and its companion book The Nearby Galaxies Catalog.

<span class="mw-page-title-main">ESO 383-76</span> Supergiant elliptical galaxy in the constellation Centaurus

ESO 383-76 is an elongated, X-ray luminous supergiant elliptical galaxy; the dominant and brightest member of the Abell 3571 galaxy cluster. It is located at the distance of 200.6 megaparsecs from Earth, and is possibly a member of the large Shapley Supercluster. With the diameter of about 540.89 kiloparsecs, it is one of the largest galaxies in the local universe, as well as one of the largest galaxies known.

References

  1. Tully, R. B.; Fisher, J. R. (1977). "A New Method of Determining Distances to Galaxies". Astronomy and Astrophysics . 54 (3): 661–673. Bibcode:1977A&A....54..661T.