Content | |
---|---|
Description | A database for DNA restriction enzymes |
Organisms | all |
Contact | |
Laboratory | New England Biolabs |
Authors | Richard J Roberts |
Primary citation | PMID 19846593 |
Release date | Dec 31st 2011 |
Access | |
Website | http://rebase.neb.com |
Download URL | ftp://ftp.neb.com |
Miscellaneous | |
Data release frequency | Monthly |
Curation policy | Yes |
In molecular biology, REBASE is a database of information about restriction enzymes and DNA methyltransferases. [1] REBASE contains an extensive set of references, sites of recognition and cleavage, sequences and structures. It also contains information on the commercial availability of each enzyme. REBASE is one of the longest running biological databases having its roots in a collection of restriction enzymes maintained by Richard J. Roberts since before 1980. [2] Since that time there have been regular descriptions of the resource in the journal Nucleic Acids Research. [3] [4]
A restriction enzyme, restriction endonuclease, or restrictase is an enzyme that cleaves DNA into fragments at or near specific recognition sites within molecules known as restriction sites. Restriction enzymes are one class of the broader endonuclease group of enzymes. Restriction enzymes are commonly classified into five types, which differ in their structure and whether they cut their DNA substrate at their recognition site, or if the recognition and cleavage sites are separate from one another. To cut DNA, all restriction enzymes make two incisions, once through each sugar-phosphate backbone of the DNA double helix.
Restriction sites, or restriction recognition sites, are located on a DNA molecule containing specific sequences of nucleotides, which are recognized by restriction enzymes. These are generally palindromic sequences, and a particular restriction enzyme may cut the sequence between two nucleotides within its recognition site, or somewhere nearby.
Site-specific DNA-methyltransferase (cytosine-N4-specific) is an enzyme with systematic name S-adenosyl-L-methionine:DNA-cytosine N4-methyltransferase. This enzyme catalyses the following chemical reaction
DNA adenine methylase, (Dam methylase) is an enzyme that adds a methyl group to the adenine of the sequence 5'-GATC-3' in newly synthesized DNA. Immediately after DNA synthesis, the daughter strand remains unmethylated for a short time. It is an orphan methyltransferase that is not part of a restriction-modification system and regulates gene expression. This enzyme catalyses the following chemical reaction
The homing endonucleases are a collection of endonucleases encoded either as freestanding genes within introns, as fusions with host proteins, or as self-splicing inteins. They catalyze the hydrolysis of genomic DNA within the cells that synthesize them, but do so at very few, or even singular, locations. Repair of the hydrolyzed DNA by the host cell frequently results in the gene encoding the homing endonuclease having been copied into the cleavage site, hence the term 'homing' to describe the movement of these genes. Homing endonucleases can thereby transmit their genes horizontally within a host population, increasing their allele frequency at greater than Mendelian rates.
Restriction endonuclease (REase) EcoRII is an enzyme of restriction modification system (RM) naturally found in Escherichia coli, a Gram-negative bacteria. Its molecular mass is 45.2 kDa, being composed of 402 amino acids.
Wikidata has the property:
|