RFID is a wireless technology supported by many different vendors for tags (also called transponders or smart cards) and readers (also called interrogators or terminals). In order to ensure global operability of the products multiple test standards have been developed. Furthermore, standardization organizations like ETSI organize RFID Plugtests, [1] [2] where products from multiple vendors are tested against each other in order to ensure interoperability.
ISO/IEC 10373-6 for conformance to ISO/IEC 14443
ISO/IEC 10373-7 for conformance to ISO/IEC 15693
ISO/IEC 18047 [3] multiple parts for conformance to ISO/IEC 18000 multiple parts
ISO/IEC 18046 [4] multiple parts for performance of ISO/IEC 18000 systems, interrogators and tags
Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder, a radio receiver and transmitter. When triggered by an electromagnetic interrogation pulse from a nearby RFID reader device, the tag transmits digital data, usually an identifying inventory number, back to the reader. This number can be used to track inventory goods.
An open standard is a standard that is openly accessible and usable by anyone. It is also a prerequisite to use open license, non-discrimination and extensibility. Typically, anybody can participate in the development. There is no single definition, and interpretations vary with usage.
Near-field communication (NFC) is a set of communication protocols that enables communication between two electronic devices over a distance of 4 cm (1.57 in) or less. NFC offers a low-speed connection through a simple setup that can be used to bootstrap more capable wireless connections. Like other "proximity card" technologies, NFC is based on inductive coupling between two so-called antennas present on NFC-enabled devices—for example a smartphone and a printer—communicating in one or both directions, using a frequency of 13.56 MHz in the globally available unlicensed radio frequency ISM band using the ISO/IEC 18000-3 air interface standard at data rates ranging from 106 to 424 kbit/s.
TTCN is a programming language used for testing of communication protocols and web services. A TTCN test suite consists of many test cases written in the TTCN programming language. Until version 2 the language was written in tables and called Tree and Tabular Combined Notation. Reading and editing this language required special TTCN editors. Beginning with version 3 TTCN was renamed to Testing and Test Control Notation. It is now closer to current programming languages and can be edited with traditional editors. TTCN-3 is more flexible than TTCN-2 in that it can be used for protocol testing as well as testing traditional software.
The Storage Management Initiative Specification, commonly called SMI-S, is a computer data storage management standard developed and maintained by the Storage Networking Industry Association (SNIA). It has also been ratified as an ISO standard. SMI-S is based upon the Common Information Model and the Web-Based Enterprise Management standards defined by the Distributed Management Task Force, which define management functionality via HTTP. The most recent approved version of SMI-S is available on the SNIA website.
The WiMedia Alliance was a non-profit industry trade group that promoted the adoption, regulation, standardization and multi-vendor interoperability of ultra-wideband (UWB) technologies. It existed from about 2002 through 2009.
In the field of Industrial Control Systems, the interfacing of various control components must provide means to coordinate the signals and commands sent between control modules. While tight coordination is desirable for discrete inputs and outputs, it is especially important in motion controls, where directing the movement of individual axes of motion must be precisely coordinated so that the motion of the entire system follows a desired path. Types of equipment requiring such coordination include metal cutting machine tools, metal forming equipment, assembly machinery, packaging machinery, robotics, printing machinery and material handling equipment. The Sercos interface is a globally standardized open digital interface for the communication between industrial controls, motion devices (drives) and input output devices (I/O). Sercos I and II are standardized in IEC 61491 and EN 61491. Sercos III is specified in standards IEC 61800-7; IEC 61784-1, -2, -3 and IEC 61158. Sercos is designed to provide hard real-time, high performance communications between industrial motion controls and digital servo drives.
Phase-jitter modulation (PJM) is a modulation method specifically designed to meet the unique requirements of passive RFID tags. It has been adopted by the high-frequency RFID Air Interface Standard ISO/IEC 18000-3 MODE 2 for high-speed bulk conveyor-fed item-level identification because of its demonstrably higher data rates. The MODE 2 PJM data rate is 423,75 kbit/s; 16 times faster than the alternative MODE 1 system ISO/IEC 18000-3 MODE 1 and the legacy HF system ISO/IEC 15693.
The ISO base media file format (ISOBMFF) is a container file format that defines a general structure for files that contain time-based multimedia data such as video and audio. It is standardized in ISO/IEC 14496-12, a.k.a. MPEG-4 Part 12, and was formerly also published as ISO/IEC 15444-12, a.k.a. JPEG 2000 Part 12.
ISO/IEC 18000-3 is an international standard for passive RFID item level identification and describes the parameters for air interface communications at 13.56 MHz. The target markets for MODE 2 are in tagging systems for manufacturing, logistics, retail, transport and airline baggage. MODE 2 is especially suitable for high speed bulk conveyor fed applications.
DASH7 Alliance Protocol (D7A) is an open-source wireless sensor and actuator network protocol, which operates in the 433 MHz, 868 MHz and 915 MHz unlicensed ISM band/SRD band. DASH7 provides multi-year battery life, range of up to 2 km, low latency for connecting with moving things, a very small open-source protocol stack, AES 128-bit shared-key encryption support, and data transfer of up to 167 kbit/s. The DASH7 Alliance Protocol is the name of the technology promoted by the non-profit consortium called the DASH7 Alliance.
Josef Preishuber-Pflügl is an Austrian technology leader.
IEC 60870 part 5 is one of the IEC 60870 set of standards which define systems used for telecontrol in electrical engineering and power system automation applications. Part 5 provides a communication profile for sending basic telecontrol messages between two systems, which uses permanent directly connected data circuits between the systems. The IEC Technical Committee 57 have developed a protocol standard for telecontrol, teleprotection, and associated telecommunications for electric power systems. The result of this work is IEC 60870-5. Five documents specify the base IEC 60870-5:
CISC Semiconductor GmbH defines itself as “design and consulting service company for industries developing embedded microelectronic systems with extremely short Time-To-Market cycles.” The company started in 1999, working in the semiconductor industry, but soon expanded its field towards the automotive branch and further extended business towards the radio frequency technology (RFID) sector in 2003. Since then, CISC gained significant experience and expertise in RFID, developing an own business segment and highly sensitive measurement equipment to test and verify RFID systems for different industries. Representatives of CISC Semiconductor are actively working on and contributing to worldwide standardization of future technologies like RFID, in different standardization organizations. This effort brings CISC into the position of being a leader in research and development, and thus being able to be “one step ahead of innovation”. As of 2011 CISC Semiconductor is in a globally leading standardization position for RFID testing by providing the convener of ISO/IEC JTC1 WG4/SG6 on “RFID performance and conformance test methods“, as well as GS1 EPCglobal co-chairs for performance and conformance tests.
CIPURSE is an open security standard for transit fare collection systems. It makes use of smart card technologies and additional security measures.
The Open Smart Grid Protocol (OSGP) is a family of specifications published by the European Telecommunications Standards Institute (ETSI) used in conjunction with the ISO/IEC 14908 control networking standard for smart grid applications. OSGP is optimized to provide reliable and efficient delivery of command and control information for smart meters, direct load control modules, solar panels, gateways, and other smart grid devices. With over 5 million OSGP based smart meters and devices deployed worldwide it is one of the most widely used smart meter and smart grid device networking standards.
ISO/IEC JTC 1/SC 31 Automatic identification and data capture techniques is a subcommittee of the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) Joint Technical Committee (JTC) 1, and was established in 1996. SC 31 develops and facilitates international standards, technical reports, and technical specifications in the field of automatic identification and data capture techniques. The first Plenary established three working groups (WGs): Data Carriers, Data Content, and Conformance. Subsequent Plenaries established other working groups: RFID, RTLS, Mobile Item Identification and Management, Security and File Management, and Applications.
ISO/IEC 20248Automatic Identification and Data Capture Techniques – Data Structures – Digital Signature Meta Structure is an international standard specification under development by ISO/IEC JTC 1/SC 31/WG 2. This development is an extension of SANS 1368, which is the current published specification. ISO/IEC 20248 and SANS 1368 are equivalent standard specifications. SANS 1368 is a South African national standard developed by the South African Bureau of Standards.