Radio halo

Last updated
Halo of the Abell 1758 cluster shown in pink from the GMRT, overlaid with Chandra data shown in blue. Cluster Collisions Switch on Radio Halos - Copy.jpg
Halo of the Abell 1758 cluster shown in pink from the GMRT, overlaid with Chandra data shown in blue.

Radio halos are large-scale sources of diffuse radio emission found in the center of some, but not all, galaxy clusters. [1] [2] There are two classes of radio halos: mini-halos and giant radio halos. The linear size of giant radio halos is about 700kpc-1Mpc, whereas mini-halos are typically less than 500kpc. Giant radio halos are more often observed in highly X-ray luminous cluster samples than less luminous X-ray clusters () in complete samples. [1] They have a very low surface brightness and do not have obvious galaxy counterparts [2] (in contrast to radio galaxies which have AGN counterparts). However, their morphologies typically follow the distribution of gas in the intra-cluster medium. Mini-halos however, while similar to giant halos, are found at the center of cooling core clusters but around a radio galaxy.

The cause of radio haloes is still debated [3] , but they may be caused by reacceleration of mildly relativistic electrons during a merger event between galaxy clusters. The generated turbulent motions of the intra-cluster plasma drive Magneto-Hydrodynamical Waves, which couples with mildly relativistic particles (i.e. of energy on the level of 100 MeV) and accelerate them up to energy of 10 GeV or more. An alternative model suggests they are caused by secondary electrons generated by collisions between cosmic ray protons (CRp) and intra-cluster medium (ICM) protons. [4]

Radio relics resemble haloes but are found at the edge of clusters. They are likely to result from synchrotron radiation originating from electrons accelerated by shock waves, moving in the intracluster magnetic field of around 0.1 - 3 μG. [5]

Related Research Articles

<span class="mw-page-title-main">Galaxy formation and evolution</span> Subfield of cosmology

In cosmology, the study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. Galaxy formation is hypothesized to occur from structure formation theories, as a result of tiny quantum fluctuations in the aftermath of the Big Bang. The simplest model in general agreement with observed phenomena is the Lambda-CDM model—that is, clustering and merging allows galaxies to accumulate mass, determining both their shape and structure. Hydrodynamics simulation, which simulates both baryons and dark matter, is widely used to study galaxy formation and evolution.

<span class="mw-page-title-main">Synchrotron radiation</span> Electromagnetic radiation

Synchrotron radiation is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity. It is produced artificially in some types of particle accelerators or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization, and the frequencies generated can range over a large portion of the electromagnetic spectrum.

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that this luminosity is not produced by the stars. Such excess, non-stellar emissions have been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an active galaxy. The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy.

<span class="mw-page-title-main">Seyfert galaxy</span> Class of active galaxies with very bright nuclei

Seyfert galaxies are one of the two largest groups of active galaxies, along with quasar host galaxies. They have quasar-like nuclei with very high surface brightnesses whose spectra reveal strong, high-ionisation emission lines, but unlike quasars, their host galaxies are clearly detectable.

<span class="mw-page-title-main">Radio galaxy</span> Type of active galaxy that is very luminous at radio wavelengths

A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039 W at radio wavelengths between 10 MHz and 100 GHz. The radio emission is due to the synchrotron process. The observed structure in radio emission is determined by the interaction between twin jets and the external medium, modified by the effects of relativistic beaming. The host galaxies are almost exclusively large elliptical galaxies. Radio-loud active galaxies can be detected at large distances, making them valuable tools for observational cosmology. Recently, much work has been done on the effects of these objects on the intergalactic medium, particularly in galaxy groups and clusters.

<span class="mw-page-title-main">Messier 87</span> Elliptical galaxy in the constellation Virgo

Messier 87 is a supergiant elliptical galaxy in the constellation Virgo that contains several trillion stars. One of the largest and most massive galaxies in the local universe, it has a large population of globular clusters—about 15,000 compared with the 150–200 orbiting the Milky Way—and a jet of energetic plasma that originates at the core and extends at least 1,500 parsecs, traveling at a relativistic speed. It is one of the brightest radio sources in the sky and a popular target for both amateur and professional astronomers.

<span class="mw-page-title-main">Sunyaev–Zeldovich effect</span> Spectral distortion of cosmic microwave background in galaxy clusters

The Sunyaev–Zeldovich effect is the spectral distortion of the cosmic microwave background (CMB) through inverse Compton scattering by high-energy electrons in galaxy clusters, in which the low-energy CMB photons receive an average energy boost during collision with the high-energy cluster electrons. Observed distortions of the cosmic microwave background spectrum are used to detect the disturbance of density in the universe. Using the Sunyaev–Zeldovich effect, dense clusters of galaxies have been observed.

In astroparticle physics, an ultra-high-energy cosmic ray (UHECR) is a cosmic ray with an energy greater than 1 EeV (1018 electronvolts, approximately 0.16 joules), far beyond both the rest mass and energies typical of other cosmic ray particles. The origin of these highest energy cosmic ray is not known.

The Oh-My-God particle was an ultra-high-energy cosmic ray detected on 15 October 1991 by the Fly's Eye camera in Dugway Proving Ground, Utah, United States. As of 2025, it is the highest-energy cosmic ray ever observed. Its energy was estimated as (3.2±0.9)×1020 eV (320 exa-eV). The particle's energy was unexpected and called into question prevailing theories about the origin and propagation of cosmic rays.

<span class="mw-page-title-main">Astrophysical jet</span> Beam of ionized matter flowing along the axis of a rotating astronomical object

An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as extended beams along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets become relativistic jets as they show effects from special relativity.

<span class="mw-page-title-main">Intracluster medium</span> Superheated plasma that permeates a galaxy cluster

In astronomy, the intracluster medium (ICM) is the superheated plasma that permeates a galaxy cluster. The gas consists mainly of ionized hydrogen and helium and accounts for most of the baryonic material in galaxy clusters. The ICM is heated to temperatures on the order of 10 to 100 megakelvins, emitting strong X-ray radiation.

<span class="mw-page-title-main">Extragalactic cosmic ray</span>

Extragalactic cosmic rays are very-high-energy particles that flow into the Solar System from beyond the Milky Way galaxy. While at low energies, the majority of cosmic rays originate within the Galaxy (such as from supernova remnants), at high energies the cosmic ray spectrum is dominated by these extragalactic cosmic rays. The exact energy at which the transition from galactic to extragalactic cosmic rays occurs is not clear, but it is in the range 1017 to 1018 eV.

<span class="mw-page-title-main">Radio relics</span>

Radio relics are diffuse synchrotron radio sources found in the peripheral regions of galaxy clusters. As in the case of radio halos, they do not have any obvious galaxy counterpart, but their shapes are much more elongated and irregular compared to those of radio halos. Their energy distribution is steep, with hints of a distribution of different ages for the emitting electrons across the whole dimension of the emitting region.

<span class="mw-page-title-main">3C 66B</span> Elliptical radio galaxy in the constellation Andromeda

3C 66B is an elliptical Fanaroff and Riley class 1 radio galaxy located in the constellation Andromeda. With an estimated redshift of 0.021258, the galaxy is about 300 million light-years away.

<span class="mw-page-title-main">Abell 2744</span> Galaxy cluster in the constellation Sculptor

Abell 2744, nicknamed Pandora's Cluster, is a giant galaxy cluster resulting from the simultaneous pile-up of at least four separate, smaller galaxy clusters that took place over a span of 350 million years, and is located approximately 4 billion light years from Earth. The galaxies in the cluster make up less than five percent of its mass. The gas is so hot that it shines only in X-rays. Dark matter makes up around 75 percent of the cluster's mass.

The MAssive Cluster Survey (MACS) compiled and characterized a sample of very X-ray luminous, distant clusters of galaxies. The sample comprises 124 spectroscopically confirmed clusters at 0.3 < z < 0.7. Candidates were selected from the ROSAT All-Sky Survey data.

Centrifugal acceleration of astroparticles to relativistic energies might take place in rotating astrophysical objects. It is strongly believed that active galactic nuclei and pulsars have rotating magnetospheres, therefore, they potentially can drive charged particles to high and ultra-high energies. It is a proposed explanation for ultra-high-energy cosmic rays (UHECRs) and extreme-energy cosmic rays (EECRs) exceeding the Greisen–Zatsepin–Kuzmin limit.

<span class="mw-page-title-main">NGC 4636</span> Galaxy in the constellation Virgo

NGC 4636 is an elliptical galaxy located in the constellation Virgo. It is a member of the NGC 4753 Group of galaxies, which is a member of the Virgo II Groups, a series of galaxies and galaxy clusters strung out from the southern edge of the Virgo Supercluster. It is located at a distance of about 55 million light years from Earth, which, given its apparent dimensions, means that NGC 4636 is about 105,000 light years across.

<span class="mw-page-title-main">NeVe 1</span> Galaxy in the constellation Ophiuchus

NeVe 1 is a supergiant elliptical galaxy, which is the central, dominant member and brightest cluster galaxy (BCG) of the Ophiuchus Cluster. It lies at a distance of about 411 million light-years away from Earth and is located behind the Zone of Avoidance region in the sky. It is the host galaxy of the Ophiuchus Supercluster eruption, the most energetic astronomical event known.

<span class="mw-page-title-main">IC 310</span> Lenticular galaxy in the constellation Perseus

IC 310 is a lenticular galaxy located in the constellation Perseus. It is located 265 million light-years from Earth, which means, given its apparent dimensions, it is about 117,000 light-years across. The galaxy was discovered by Edward D. Swift on November 3, 1888.

References

  1. 1 2 Giovannini, G.; Tordi, M.; Feretti, L. (1999). "Radio Halo and Relic Candidates from the NRAO VLA Sky Survey". New Astronomy. 4 (2): 141–155. arXiv: astro-ph/9904210 . Bibcode:1999NewA....4..141G. doi:10.1016/S1384-1076(99)00018-4. ISSN   1384-1076. S2CID   19610561.
  2. 1 2 Feretti, L., and G. Swarup. "The Universe at Low Radio Frequencies." Proceedings of IAU Symposium. Vol. 199. 2002.
  3. Keshet, Uri (2023-10-28). "Radio haloes and relics from extended cosmic-ray ion distributions with strong diffusion in galaxy clusters" (PDF). Monthly Notices of the Royal Astronomical Society. 527 (1): 1194–1215. doi: 10.1093/mnras/stad3154 . ISSN   0035-8711 . Retrieved 2025-01-08.
  4. Brunetti, G.; Blasi, P. (November 2005). "Alfvénic reacceleration of relativistic particles in galaxy clusters in the presence of secondary electrons and positrons". Monthly Notices of the Royal Astronomical Society. 363 (4): 1173–1187. arXiv: astro-ph/0508100 . Bibcode:2005MNRAS.363.1173B. doi: 10.1111/j.1365-2966.2005.09511.x . S2CID   16726839.
  5. Ferrari, C.; Govoni, F.; Schindler, S.; Bykov, A. M.; Rephaeli, Y. (2008). "Observations of Extended Radio Emission in Clusters". Clusters of Galaxies. pp. 93–118. arXiv: 0801.0985 . doi:10.1007/978-0-387-78875-3_6. ISBN   978-0-387-78874-6.