Surface brightness

Last updated

In astronomy, surface brightness (SB) quantifies the apparent brightness or flux density per unit angular area of a spatially extended object such as a galaxy or nebula, or of the night sky background. An object's surface brightness depends on its surface luminosity density, i.e., its luminosity emitted per unit surface area. In visible and infrared astronomy, surface brightness is often quoted on a magnitude scale, in magnitudes per square arcsecond (MPSAS) in a particular filter band or photometric system.

Contents

Measurement of the surface brightnesses of celestial objects is called surface photometry.

General description

The total magnitude is a measure of the brightness of an extended object such as a nebula, cluster, galaxy or comet. It can be obtained by summing up the luminosity over the area of the object. Alternatively, a photometer can be used by applying apertures or slits of different sizes of diameter. [1] The background light is then subtracted from the measurement to obtain the total brightness. [2] The resulting magnitude value is the same as a point-like source that is emitting the same amount of energy. [3] The total magnitude of a comet is the combined magnitude of the coma and nucleus.

The apparent magnitude of an astronomical object is generally given as an integrated value—if a galaxy is quoted as having a magnitude of 12.5, it means we see the same total amount of light from the galaxy as we would from a star with magnitude 12.5. However, a star is so small it is effectively a point source in most observations (the largest angular diameter, that of R Doradus, is 0.057 ± 0.005 arcsec), whereas a galaxy may extend over several arcseconds or arcminutes. Therefore, the galaxy will be harder to see than the star against the airglow background light. Apparent magnitude is a good indication of visibility if the object is point-like or small, whereas surface brightness is a better indicator if the object is large. What counts as small or large depends on the specific viewing conditions and follows from Ricco's law. [4] In general, in order to adequately assess an object's visibility one needs to know both parameters.

This is the reason the extreme naked eye limit for viewing a star is apparent magnitude 8, [5] but only apparent magnitude 6.9 for galaxies. [6]

Diffuse objects visible to the naked eye
Object apmag
Andromeda Galaxy (M31)3.4
Orion Nebula (M42)4
Triangulum Galaxy (M33)5.7
Bode's Galaxy (M81)6.9

Calculating surface brightness

Surface brightnesses are usually quoted in magnitudes per square arcsecond. Because the magnitude is logarithmic, calculating surface brightness cannot be done by simple division of magnitude by area. Instead, for a source with a total or integrated magnitude m extending over a visual area of A square arcseconds, the surface brightness S is given by

For astronomical objects, surface brightness is analogous to photometric luminance and is therefore constant with distance: as an object becomes fainter with distance, it also becomes correspondingly smaller in visual area. In geometrical terms, for a nearby object emitting a given amount of light, radiative flux decreases with the square of the distance to the object, but the physical area corresponding to a given solid angle or visual area (e.g. 1 square arcsecond) decreases by the same proportion, resulting in the same surface brightness. [7] For extended objects such as nebulae or galaxies, this allows the estimation of spatial distance from surface brightness by means of the distance modulus or luminosity distance.[ clarification needed ]

Relationship to physical units

The surface brightness in magnitude units is related to the surface brightness in physical units of solar luminosity per square parsec by[ citation needed ] where and are the absolute magnitude and the luminosity of the Sun in chosen color-band [8] respectively.

Surface brightness can also be expressed in candela per square metre using the formula [value in cd/m2] = 10.8×104 × 10(−0.4×[value in mag/arcsec2]).

Examples

A truly dark sky has a surface brightness of 2×10−4 cd m−2 or 21.8 mag arcsec−2. [9] [ clarification needed ]

The peak surface brightness of the central region of the Orion Nebula is about 17 Mag/arcsec2 (about 14 milli nits) and the outer bluish glow has a peak surface brightness of 21.3 Mag/arcsec2 (about 0.27 millinits). [10]

See also

Related Research Articles

<span class="mw-page-title-main">Aquarius (constellation)</span> Zodiac constellation straddling the celestial equator

Aquarius is an equatorial constellation of the zodiac, between Capricornus and Pisces. Its name is Latin for "water-carrier" or "cup-carrier", and its old astronomical symbol is (♒︎), a representation of water. Aquarius is one of the oldest of the recognized constellations along the zodiac. It was one of the 48 constellations listed by the 2nd century astronomer Ptolemy, and it remains one of the 88 modern constellations. It is found in a region often called the Sea due to its profusion of constellations with watery associations such as Cetus the whale, Pisces the fish, and Eridanus the river.

<span class="mw-page-title-main">Apparent magnitude</span> Brightness of a celestial object observed from the Earth

Apparent magnitude is a measure of the brightness of a star, astronomical object or other celestial objects like artificial satellites. Its value depends on its intrinsic luminosity, its distance, and any extinction of the object's light caused by interstellar dust along the line of sight to the observer.

In astronomy, absolute magnitude is a measure of the luminosity of a celestial object on an inverse logarithmic astronomical magnitude scale. An object's absolute magnitude is defined to be equal to the apparent magnitude that the object would have if it were viewed from a distance of exactly 10 parsecs, without extinction of its light due to absorption by interstellar matter and cosmic dust. By hypothetically placing all objects at a standard reference distance from the observer, their luminosities can be directly compared among each other on a magnitude scale. For Solar System bodies that shine in reflected light, a different definition of absolute magnitude (H) is used, based on a standard reference distance of one astronomical unit.

<span class="mw-page-title-main">Corona Australis</span> Constellation in the southern celestial hemisphere

Corona Australis is a constellation in the Southern Celestial Hemisphere. Its Latin name means "southern crown", and it is the southern counterpart of Corona Borealis, the northern crown. It is one of the 48 constellations listed by the 2nd-century astronomer Ptolemy, and it remains one of the 88 modern constellations. The Ancient Greeks saw Corona Australis as a wreath rather than a crown and associated it with Sagittarius or Centaurus. Other cultures have likened the pattern to a turtle, ostrich nest, a tent, or even a hut belonging to a rock hyrax.

<span class="mw-page-title-main">Luminosity</span> Measurement of radiant electromagnetic power emitted by an object

Luminosity is an absolute measure of radiated electromagnetic energy (light) per unit time, and is synonymous with the radiant power emitted by a light-emitting object. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical objects.

<span class="mw-page-title-main">Proper motion</span> Measure of observed changes in the apparent locations of stars

Proper motion is the astrometric measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more distant stars.

A visual binary is a gravitationally bound binary star system that can be resolved into two stars. These stars are estimated, via Kepler's third law, to have periods ranging from a few years to thousands of years. A visual binary consists of two stars, usually of a different brightness. Because of this, the brighter star is called the primary and the fainter one is called the companion. If the primary is too bright, relative to the companion, this can cause a glare making it difficult to resolve the two components. However, it is possible to resolve the system if observations of the brighter star show it to wobble about a centre of mass. In general, a visual binary can be resolved into two stars with a telescope if their centres are separated by a value greater than or equal to one arcsecond, but with modern professional telescopes, interferometry, or space-based equipment, stars can be resolved at closer distances.

<span class="mw-page-title-main">Andromeda (constellation)</span> Constellation in the northern celestial hemisphere

Andromeda is one of the 48 constellations listed by the 2nd-century Greco-Roman astronomer Ptolemy, and one of the 88 modern constellations. Located in the northern celestial hemisphere, it is named for Andromeda, daughter of Cassiopeia, in the Greek myth, who was chained to a rock to be eaten by the sea monster Cetus. Andromeda is most prominent during autumn evenings in the Northern Hemisphere, along with several other constellations named for characters in the Perseus myth. Because of its northern declination, Andromeda is visible only north of 40° south latitude; for observers farther south, it lies below the horizon. It is one of the largest constellations, with an area of 722 square degrees. This is over 1,400 times the size of the full moon, 55% of the size of the largest constellation, Hydra, and over 10 times the size of the smallest constellation, Crux.

<span class="mw-page-title-main">Photometry (astronomy)</span> Determination of light intensities of astronomical bodies

In astronomy, photometry, from Greek photo- ("light") and -metry ("measure"), is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects. This light is measured through a telescope using a photometer, often made using electronic devices such as a CCD photometer or a photoelectric photometer that converts light into an electric current by the photoelectric effect. When calibrated against standard stars of known intensity and colour, photometers can measure the brightness or apparent magnitude of celestial objects.

<span class="mw-page-title-main">Perseus (constellation)</span> Constellation in the northern celestial hemisphere

Perseus is a constellation in the northern sky, named after the Greek mythological hero Perseus. It is one of the 48 ancient constellations listed by the 2nd-century astronomer Ptolemy, and among the 88 modern constellations defined by the International Astronomical Union (IAU). It is located near several other constellations named after ancient Greek legends surrounding Perseus, including Andromeda to the west and Cassiopeia to the north. Perseus is also bordered by Aries and Taurus to the south, Auriga to the east, Camelopardalis to the north, and Triangulum to the west. Some star atlases during the early 19th century also depicted Perseus holding the disembodied head of Medusa, whose asterism was named together as Perseus et Caput Medusae; however, this never came into popular usage.

<span class="mw-page-title-main">Circinus</span> Constellation in the southern celestial hemisphere

Circinus is a small, faint constellation in the southern sky, first defined in 1756 by the French astronomer Nicolas-Louis de Lacaille. Its name is Latin for compass, referring to the drafting tool used for drawing circles. Its brightest star is Alpha Circini, with an apparent magnitude of 3.19. Slightly variable, it is the brightest rapidly oscillating Ap star in the night sky. AX Circini is a Cepheid variable visible with the unaided eye, and BX Circini is a faint star thought to have been formed from the merger of two white dwarfs. Two sun-like stars have planetary systems: HD 134060 has two small planets, and HD 129445 has a Jupiter-like planet. Supernova SN 185 appeared in Circinus in 185 AD and was recorded by Chinese observers. Two novae have been observed more recently, in the 20th century.

Naked eye, also called bare eye or unaided eye, is the practice of engaging in visual perception unaided by a magnifying, light-collecting optical instrument, such as a telescope or microscope, or eye protection.

<span class="mw-page-title-main">Cosmic distance ladder</span> Succession of methods by which astronomers determine the distances to celestial objects

The cosmic distance ladder is the succession of methods by which astronomers determine the distances to celestial objects. A direct distance measurement of an astronomical object is possible only for those objects that are "close enough" to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known luminosity.

<span class="mw-page-title-main">Angular diameter</span> How large a sphere or circle appears

The angular diameter, angular size, apparent diameter, or apparent size is an angular distance describing how large a sphere or circle appears from a given point of view. In the vision sciences, it is called the visual angle, and in optics, it is the angular aperture. The angular diameter can alternatively be thought of as the angular displacement through which an eye or camera must rotate to look from one side of an apparent circle to the opposite side. Humans can resolve with their naked eyes diameters down to about 1 arcminute. This corresponds to 0.3 m at a 1 km distance, or to perceiving Venus as a disk under optimal conditions.

<span class="mw-page-title-main">Messier 58</span> Galaxy in the constellation Virgo

Messier 58 is an intermediate barred spiral galaxy with a weak inner ring structure located within the constellation Virgo, approximately 68 million light-years away from Earth. It was discovered by Charles Messier on April 15, 1779 and is one of four barred spiral galaxies that appear in Messier's catalogue. M58 is one of the brightest galaxies in the Virgo Cluster. From 1779 it was arguably the farthest known astronomical object until the release of the New General Catalogue in the 1880s and even more so the publishing of redshift values in the 1920s.

<span class="mw-page-title-main">Limiting magnitude</span> Faintest item observable by an instrument

In astronomy, limiting magnitude is the faintest apparent magnitude of a celestial body that is detectable or detected by a given instrument.

The distance modulus is a way of expressing distances that is often used in astronomy. It describes distances on a logarithmic scale based on the astronomical magnitude system.

The Malmquist bias is an effect in observational astronomy which leads to the preferential detection of intrinsically bright objects. It was first described in 1922 by Swedish astronomer Gunnar Malmquist (1893–1982), who then greatly elaborated upon this work in 1925. In statistics, this bias is referred to as a selection bias or data censoring. It affects the results in a brightness-limited survey, where stars below a certain apparent brightness cannot be included. Since observed stars and galaxies appear dimmer when farther away, the brightness that is measured will fall off with distance until their brightness falls below the observational threshold. Objects which are more luminous, or intrinsically brighter, can be observed at a greater distance, creating a false trend of increasing intrinsic brightness, and other related quantities, with distance. This effect has led to many spurious claims in the field of astronomy. Properly correcting for these effects has become an area of great focus.

<span class="mw-page-title-main">Magnitude (astronomy)</span> Logarithmic measure of the brightness of an astronomical object

In astronomy, magnitude is measure of the brightness of an object, usually in a defined passband. An imprecise but systematic determination of the magnitude of objects was introduced in ancient times by Hipparchus.

<span class="mw-page-title-main">Donatiello I</span> Dwarf spheroidal galaxy located in the constellation Andromeda

Donatiello I, also known as Mirach's Goblin, is a dwarf spheroidal galaxy in the constellation Andromeda, located between 8.1 and 11.4 million light-years from Earth. It is a possible satellite galaxy of the dwarf lenticular galaxy NGC 404, "Mirach's Ghost", which is situated 60 arcminutes away. It is otherwise one of the most isolated dwarf spheroidal galaxies known, being separated from NGC 404 by around 211,000 light-years. The galaxy is named after its discoverer, amateur astronomer and astrophotographer Giuseppe Donatiello, who sighted the galaxy in a 2016 review of his archival long exposures from 2010 and 2013. Follow-up observations with the Roque de los Muchachos Observatory led to a scientific paper on its discovery being published in December 2018.

References

  1. Daintith, John; Gould, William (2006). The Facts on File dictionary of astronomy. Facts on File science library (5th ed.). Infobase Publishing. p. 489. ISBN   0-8160-5998-5.
  2. Palei, A. B. (August 1968). "Integrating Photometers". Soviet Astronomy. 12: 164. Bibcode:1968SvA....12..164P.
  3. Sherrod, P. Clay; Koed, Thomas L. (2003). A Complete Manual of Amateur Astronomy: Tools and Techniques for Astronomical Observations. Astronomy Series. Courier Dover Publications. p. 266. ISBN   0-486-42820-6.
  4. Crumey, Andrew (2014). "Human contrast threshold and astronomical visibility". Monthly Notices of the Royal Astronomical Society. 442 (3): 2600–2619. arXiv: 1405.4209 . Bibcode:2014MNRAS.442.2600C. doi: 10.1093/mnras/stu992 .
  5. John E. Bortle (February 2001). "The Bortle Dark-Sky Scale". Sky & Telescope. Archived from the original on 23 March 2009. Retrieved 2009-11-18.
  6. "Messier 81". SEDS (Students for the Exploration and Development of Space). 2007-09-02. Archived from the original on 2017-07-14. Retrieved 2009-11-28.
  7. Sparke & Gallagher (2000 , § 5.1.2)
  8. Absolute magnitudes of the Sun in different color-bands can be obtained from Binney & Merrifield (1998) or Absolute Magnitude of the Sun in Several Bands Archived 2007-07-18 at the Wayback Machine
  9. Based on the equivalence 21.83 mag arcsec−2 = 2×10−4 cd m−2, from description of a "truly dark sky", Section 1.3 of Crumey, A. (2014). Human contrast threshold and astronomical visibility. MNRAS 442, 2600–2619.
  10. Clark, Roger (2004-03-28). "Surface Brightness of Deep Sky Objects" . Retrieved 2013-06-29.. The conversion to nits is based on 0 magnitude being 2.08 microlux.

General references