Astronomical filter

Last updated
Ultraviolet filters for protecting a camera from ultraviolet radiation Dichroic filters.jpg
Ultraviolet filters for protecting a camera from ultraviolet radiation

An astronomical filter is a telescope accessory consisting of an optical filter used by amateur astronomers to simply improve the details and contrast of celestial objects, either for viewing or for photography. Research astronomers, on the other hand, use various band-pass filters for photometry on telescopes, in order to obtain measurements which reveal objects' astrophysical properties, such as stellar classification and placement of a celestial body on its Wien curve.

Contents

Most astronomical filters work by blocking a specific part of the color spectrum above and below a bandpass, significantly increasing the signal-to-noise ratio of the interesting wavelengths, and so making the object gain detail and contrast. While the color filters transmit certain colors from the spectrum and are usually used for observation of the planets and the Moon, the polarizing filters work by adjusting the brightness, and are usually used for the Moon. The broad-band and narrow-band filters transmit the wavelengths that are emitted by the nebulae (by the Hydrogen and Oxygen atoms), and are frequently used for reducing the effects of light pollution. [1]

Filters have been used in astronomy at least since the solar eclipse of May 12, 1706. [2]

Solar filters

White light filters

Solar filters block most of the sunlight to avoid any damage to the eyes. Proper filters are usually made from a durable glass or polymer film that transmits only 0.00001% of the light. For safety, solar filters must be securely fitted over the objective of a refracting telescope or aperture of a reflecting telescope so that the body does not heat up significantly.

Small solar filters threaded behind eyepieces do not block the radiation entering the scope body, causing the telescope to heat up greatly, and it is not unknown for them to shatter from thermal shock. Therefore, most experts do not recommend such solar filters for eyepieces, and some stockists refuse to sell them or remove them from telescope packages. According to NASA: "Solar filters designed to thread into eyepieces that are often provided with inexpensive telescopes are also unsafe. These glass filters can crack unexpectedly from overheating when the telescope is pointed at the Sun, and retinal damage can occur faster than the observer can move the eye from the eyepiece." [3]

Solar filters are used to safely observe and photograph the Sun, which despite being white, may appear as a yellow-orange disk. A telescope with these filters attached can directly and properly view details of solar features, especially sunspots and granulation on the surface, [4] as well as solar eclipses and transits of the inferior planets Mercury and Venus across the solar disk.

Narrowband filters

The Herschel Wedge is a prism-based device combined with a neutral-density filter that directs most of the heat and ultraviolet rays out of the telescope, generally giving better results than most filter types. The H-alpha filter transmits the H-alpha spectral line for viewing solar flares and prominences [1] invisible through common filters. These H-alpha filters are much narrower than those use for night H-alpha observing (see Nebular filters below), passing only 0.05 nm (0.5  angstrom) for one common model, [5] compared with 3 nm-12 nm or more for night filters. Due to the narrow bandpass and temperature shifts often telescopes like that are tunable within about a ±0.05 nm.

NASA included the following filters on the Solar Dynamics Observatory, of which only one is visible to human eyes (450.0 nm): [6] 450.0 nm, 170.0 nm, 160.0 nm, 33.5 nm, 30.4 nm, 19.3 nm, 21.1 nm, 17.1 nm, 13.1 nm, and 9.4 nm. These were chosen for temperature, instead of particular emission lines, as are many narrowband filters such as the H-alpha line mentioned above.

Color filters

A blue color filter Filter-kb20 hg.jpg
A blue color filter

Color filters work by absorption/transmission, and can tell which part of the spectrum they are reflecting and transmitting. Filters can be used to increase contrast and enhance the details of the Moon and planets. All of the visible spectrum colors each have a filter, and every color filter is used to bring a certain lunar and planetary feature; for example, the #8 yellow filter is used to show Mars's maria and Jupiter's belts. [7] The Wratten system is the standard number system used to refer to the color filter types. It was first manufactured by Kodak in 1909. [1]

Professional filters are also colored, but their bandpass centers are placed around other midpoints (such as in the UBVRI and Cousins systems).

Some of common color filters and their uses are: [8]

Moon filters

Neutral density filters, also known in astronomy as Moon filters, are another approach for contrast enhancement and glare reduction. They work simply by blocking some of the object's light to enhance the contrast. Neutral density filters are mainly used in traditional photography, but are used in astronomy to enhance lunar and planetary observations.

Polarizing filters

Polarizing filters adjust the brightness of images to a better level for observing, but much less so than solar filters. With these types of filter, the range of transmission varies from 3% to 40%. They are usually used for the observation of the Moon, [1] but may also be used for planetary observation. They consist of two polarizing layers in a rotating aluminum cell, [9] which changes the amount of transmission of the filter by rotating them. This reduction in brightness and improvement in contrast can reveal the lunar surface features and details, especially when it is near full. Polarizing filters should not be used in place of solar filters designed specially for observing the sun.

Nebular filters

Narrowband

The three main spectral lines that narrow-band filters transmit UHC filter spectrum.jpg
The three main spectral lines that narrow-band filters transmit

Narrow-band filters are astronomical filters which transmit only a narrow band of spectral lines from the spectrum (usually 22 nm bandwidth, or less). They are mainly used for nebulae observation. Emission nebulae mainly radiate the doubly ionized oxygen in the visible spectrum, which emits near 500 nm wavelength. These nebulae also radiate weakly at 486 nm, the Hydrogen-beta line.

There are two main types of Narrowband filters: Ultra-high contrast (UHC), and specific emission line(s) filters.

Specific Emission line filters

Specific emission line (or lines) filters are used to isolate lines of specific elements or molecules to see their distribution within Nebulae. By combining the images from different filters they may also be used to produce false color images. Common filters are often used with the Hubble Space Telescope, forming the so-called HST-palette, with colors assigned as such: Red = S-II; Green = H-alpha; Blue = O-III. These filters are commonly specified with a second figure in nm, which refers to how wide a band is passed, which may cause it to exclude or include other lines. For example, H-alpha at 656 nm, may pick up N-II (at 658–654 nm), some filters will block most of the N-II if they are 3 nm wide. [10]

Commonly used lines / filters are:

  • H-Alpha Hα / Ha (656 nm) from the Balmer series is emitted by HII Regions and is one of the stronger sources.
  • H-Beta Hβ / Hb (486 nm) from the Balmer series is visible from stronger sources.
  • O-III (496 nm and 501 nm) filters allow for both of the Oxygen-III lines to pass through. This is strong in many Emission nebulae.
  • S-II (672 nm) filters show the Sulfur-II line.

Less common lines/filters:

  • He-II (468 nm) [11]
  • He-I: (587 nm) [11]
  • O-I: (630 nm) [11]
  • Ar-III: (713 nm) [11]
  • CA-II Ca-K/Ca-H: (393 and 396 nm) [12] For solar observing, shows the sun with the K and H Fraunhofer lines
  • N-II (658 nm and 654 nm) Often included in wider H-alpha filters [10]
  • Methane (889 nm) [13] allowing clouds to be seen on the gas giants, Venus and (with filter) the Sun.

Ultra-High Contrast filters

Known commonly as UHC filters, these filters consist of things which allow multiple strong common emission lines to pass through, which also has the effect of the similar Light Pollution Reduction filters (see below) of blocking most light sources.

The UHC filters range from 484 to 506 nm. [7] It transmits both the O-III and H-beta spectral lines, blocks a large fraction of light pollution, and brings the details of planetary nebula and most of emission nebulae under a dark sky. [14]

Broadband

The broadband, or light pollution reduction (LPR), filters are designed to block the Sodium and Mercury vapor light, and also block natural skyglow such as the aurora l light. [15] This allows observing nebulae from the city and light polluted skies. [1] Broadband filters differ from narrowband with the range of wavelengths transmission. LED lighting is more broadband so it is not blocked, although white LEDs have a considerably lower output around 480 nm, which is close to O III and H-beta wavelength. Broadband filters have a wider range because a narrow transmission range causes a fainter image of sky objects, and since the work of these filters is revealing the details of nebulae from light polluted skies, it has a wider transmission for more brightness. [7] These filters are particularly designed for galaxy observation and photography, and not useful with other deep sky objects such as emission nebulae. However, they can still improve the contrast between the DSOs and the background sky, which may clarify the image.

See also

Related Research Articles

<span class="mw-page-title-main">Ring Nebula</span> Planetary nebula in Lyra

The Ring Nebula is a planetary nebula in the northern constellation of Lyra. Such a nebula is formed when a star, during the last stages of its evolution before becoming a white dwarf, expels a vast luminous envelope of ionized gas into the surrounding interstellar space.

<span class="mw-page-title-main">Optical microscope</span> Microscope that uses visible light

The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast.

<span class="mw-page-title-main">Astrophotography</span> Imaging of astronomical objects

Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object was taken in 1840, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, modern astrophotography has the ability to image objects outside of the visible spectrum of the human eye such as dim stars, nebulae, and galaxies. This is accomplished through long time exposure as both film and digital cameras can accumulate and sum photons over long periods of time or using specialized optical filters which limit the photons to a certain wavelength.

<span class="mw-page-title-main">Infrared cut-off filter</span> Optical filters that block near-infrared while passing visible light

Infrared cut-off filters, sometimes called IR filters or heat-absorbing filters, are designed to reflect or block near-infrared wavelengths while passing visible light. They are often used in devices with bright incandescent light bulbs to prevent unwanted heating. There are also filters which are used in solid state video cameras to block IR due to the high sensitivity of many camera sensors to near-infrared light. These filters typically have a blue hue to them as they also sometimes block some of the light from the longer red wavelengths.

<span class="mw-page-title-main">Astronomical spectroscopy</span> Study of astronomy using spectroscopy to measure the spectrum of electromagnetic radiation

Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance and luminosity. Spectroscopy can show the velocity of motion towards or away from the observer by measuring the Doppler shift. Spectroscopy is also used to study the physical properties of many other types of celestial objects such as planets, nebulae, galaxies, and active galactic nuclei.

<span class="mw-page-title-main">North America Nebula</span> Emission nebula in the constellation Cygnus

The North America Nebula is an emission nebula in the constellation Cygnus, close to Deneb. It is named because its shape resembles North America.

<span class="mw-page-title-main">H-alpha</span> Deep-red spectral line of hydrogen

H-alpha () is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is emitted when an electron falls from a hydrogen atom's third- to second-lowest energy level. H-alpha has applications in astronomy where its emission can be observed from emission nebulae and from features in the Sun's atmosphere, including solar prominences and the chromosphere.

<span class="mw-page-title-main">Observational astronomy</span> Division of astronomy

Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments.

<span class="mw-page-title-main">Optical coating</span> Material which alters light reflection or transmission on optics

An optical coating is one or more thin layers of material deposited on an optical component such as a lens, prism or mirror, which alters the way in which the optic reflects and transmits light. These coatings have become a key technology in the field of optics. One type of optical coating is an anti-reflective coating, which reduces unwanted reflections from surfaces, and is commonly used on spectacle and camera lenses. Another type is the high-reflector coating, which can be used to produce mirrors that reflect greater than 99.99% of the light that falls on them. More complex optical coatings exhibit high reflection over some range of wavelengths, and anti-reflection over another range, allowing the production of dichroic thin-film filters.

<span class="mw-page-title-main">Optical filter</span> Filters which selectively transmit specific colors

An optical filter is a device that selectively transmits light of different wavelengths, usually implemented as a glass plane or plastic device in the optical path, which are either dyed in the bulk or have interference coatings. The optical properties of filters are completely described by their frequency response, which specifies how the magnitude and phase of each frequency component of an incoming signal is modified by the filter.

<span class="mw-page-title-main">Deep-sky object</span> Any astronomical object that is not an individual star

A deep-sky object (DSO) is any astronomical object that is not an individual star or Solar System object. The classification is used for the most part by amateur astronomers to denote visually observed faint naked eye and telescopic objects such as star clusters, nebulae and galaxies. This distinction is practical and technical, implying a variety of instruments and techniques appropriate to observation, and does not distinguish the nature of the object itself.

<span class="mw-page-title-main">Crescent Nebula</span> Emission nebula in the constellation Cygnus

The Crescent Nebula is an emission nebula in the constellation Cygnus, about 5000 light-years away from Earth. It was discovered by William Herschel in 1792. It is formed by the fast stellar wind from the Wolf-Rayet star WR 136 colliding with and energizing the slower moving wind ejected by the star when it became a red giant around 250,000 to 400,000 years ago. The result of the collision is a shell and two shock waves, one moving outward and one moving inward. The inward moving shock wave heats the stellar wind to X-ray-emitting temperatures.

<span class="mw-page-title-main">TRACE</span> NASA satellite of the Explorer program

Transition Region and Coronal Explorer was a NASA heliophysics and solar observatory designed to investigate the connections between fine-scale magnetic fields and the associated plasma structures on the Sun by providing high resolution images and observation of the solar photosphere, the transition region, and the solar corona. A main focus of the TRACE instrument is the fine structure of coronal loops low in the solar atmosphere. TRACE is the third spacecraft in the Small Explorer program, launched on 2 April 1998, and obtained its last science image on 21 June 2010, at 23:56 UTC.

<span class="mw-page-title-main">International Ultraviolet Explorer</span> Astronomical observatory satellite

International Ultraviolet Explorer, was the first space observatory primarily designed to take ultraviolet (UV) electromagnetic spectrum. The satellite was a collaborative project between NASA, the United Kingdom's Science and Engineering Research Council and the European Space Agency (ESA), formerly European Space Research Organisation (ESRO). The mission was first proposed in early 1964, by a group of scientists in the United Kingdom, and was launched on 26 January 1978 aboard a NASA Thor-Delta 2914 launch vehicle. The mission lifetime was initially set for 3 years, but in the end it lasted 18 years, with the satellite being shut down in 1996. The switch-off occurred for financial reasons, while the telescope was still functioning at near original efficiency.

<span class="mw-page-title-main">Solar telescope</span> Telescope used to observe the Sun

A solar telescope is a special purpose telescope used to observe the Sun. Solar telescopes usually detect light with wavelengths in, or not far outside, the visible spectrum. Obsolete names for Sun telescopes include heliograph and photoheliograph.

<span class="mw-page-title-main">Atomic line filter</span> Optical band-pass filter used in the physical sciences

An atomic line filter (ALF) is a more effective optical band-pass filter used in the physical sciences for filtering electromagnetic radiation with precision, accuracy, and minimal signal strength loss. Atomic line filters work via the absorption or resonance lines of atomic vapors and so may also be designated an atomic resonance filter (ARF).

A vector magnetograph is a type of imaging telescope that can estimate the 3-D vector of the magnetic field on a distant body with a resolved line spectrum. Magnetographs are useful for studying the Sun because the surface magnetic field is important to the creation and maintenance of the solar corona, and gives rise to the phenomena of solar flares and space weather.

<span class="mw-page-title-main">Doubly ionized oxygen</span>

In astronomy and atomic physics, doubly ionized oxygen is the ion O2+ (O III in spectroscopic notation). Its emission forbidden lines in the visible spectrum fall primarily at the wavelength 500.7 nm, and secondarily at 495.9 nm. Before spectra of oxygen ions became known, these lines once led to a spurious identification of the substance as a new chemical element. Concentrated levels of O III are found in diffuse and planetary nebulae. Consequently, narrow band-pass filters that isolate the 500.7 nm and 495.9 nm wavelengths of light, that correspond to green-turquoise-cyan spectral colors, are useful in observing these objects, causing them to appear at higher contrast against the filtered and consequently blacker background of space (and possibly light-polluted terrestrial atmosphere) where the frequencies of [O III] are much less pronounced.

<span class="mw-page-title-main">Herschel wedge</span> Optical prism used in solar observation

A Herschel wedge or Herschel prism is an optical prism used in solar observation to refract most of the light out of the optical path, allowing safe visual observation. It was first proposed and used by astronomer John Herschel in the 1830s.

<span class="mw-page-title-main">Goode Solar Telescope</span> Scientific facility in Big Bear Lake, California, U.S.

The Goode Solar Telescope (GST) is a scientific facility for studies of the Sun named after Philip R. Goode. It was the solar telescope with the world's largest aperture in operation for more than a decade. Located in Big Bear Lake; California, the Goode Solar Telescope is the main telescope of the Big Bear Solar Observatory operated by the New Jersey Institute of Technology (NJIT). Initially named New Solar Telescope (NST), first engineering light was obtained in December 2008, and scientific observations of the Sun began in January 2009. On July 17, 2017, the NST was renamed in honor of Goode, a former, and founding director of NJIT's Center for Solar-Terrestrial Research and the principal investigator of the facility. Goode conceived, raised the funds, and assembled the team that built and commissioned the telescope, and it was the highest resolution solar telescope in the world (until the end of 2019) and the first facility class solar telescope built in the U.S. in a generation.

References

  1. 1 2 3 4 5 "The use of filters". Astronomy for everyone. 31 January 2009. Archived from the original on 11 November 2010. Retrieved 22 November 2010.
  2. Thieme, Nick (2017-08-18). "A Brief History of Eclipse Glasses and the People Who Forgot to Wear Them". Slate Magazine. Retrieved 2021-08-07.
  3. "Eye Safety During Eclipses". NASA.
  4. "Solar Filters". Thousand Oaks Optical. Retrieved 22 November 2010.
  5. "Coronado PST Personal Solar Telescope". Archived from the original on 6 August 2020. Retrieved 18 October 2018.
  6. "Why NASA scientists observe the sun in different wavelengths". NASA. Retrieved 18 October 2018.
  7. 1 2 3 "filters - popular and hot telescope filters". Lumicon international. Archived from the original on 25 November 2010. Retrieved 22 November 2010.
  8. "Orion 1.25" Deluxe StarGazer's six-filter set of light pollution, variable polarizer, and color filters". Archived from the original on 7 July 2011. Retrieved 9 March 2011.
  9. "Orion variable polarizing telescope filters". Orion Telescopes & Binoculars. Archived from the original on 13 October 2010. Retrieved 22 November 2010.
  10. 1 2 "Astrodon Narrowband FAQ" (PDF). Astrodon. Archived (PDF) from the original on 10 October 2018. Retrieved 10 October 2018.
  11. 1 2 3 4 "Helium, argon, neutral oxygen, and other bands in narrow-band imaging". Lumicon international. Archived from the original on 10 October 2018. Retrieved 10 October 2018.
  12. "Important notes on the stacked K-line filter" (PDF). Baader Planetarium. Archived (PDF) from the original on 10 October 2018. Retrieved 10 October 2018.
  13. "Baader Planetarium methane filter description". Archived from the original on 24 December 2017. Retrieved 10 October 2018.
  14. "UHC filters". Archived from the original on 7 July 2011. Retrieved 22 November 2010.
  15. "Meade series 4000 Broadband Nebular filters". Meade Instruments. Archived from the original on 11 March 2015. Retrieved 23 November 2010.