Transit of Venus

Last updated

SDO's Ultra-high Definition View of 2012 Venus Transit (171 Angstrom Full Disc).jpg
171 ångströms (17.1 nm)
NASA's SDO Satellite Captures First Image of 2012 Venus Transit (Full Disc).jpg
Continuous visible spectrum
False-color ultraviolet and visible spectrum images of the 2012 transit of Venus, as taken from NASA's Solar Dynamics Observatory
Image of the 2012 transit taken by NASA's Solar Dynamics Observatory spacecraft SDO's Ultra-high Definition View of 2012 Venus Transit (304 Angstrom Full Disc 02).jpg
Image of the 2012 transit taken by NASA's Solar Dynamics Observatory spacecraft

A transit of Venus across the Sun takes place when the planet Venus passes directly between the Sun and a superior planet, becoming visible against (and hence obscuring a small portion of) the solar disk. During a transit, Venus can be seen from Earth as a small black dot moving across the face of the Sun. The duration of such transits is usually several hours (the transit of 2012 lasted 6 hours and 40 minutes). A transit is similar to a solar eclipse by the Moon. While the diameter of Venus is more than three times that of the Moon, Venus appears smaller, and travels more slowly across the face of the Sun, because it is much farther away from Earth.

Sun Star at the centre of the Solar System

The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma, with internal convective motion that generates a magnetic field via a dynamo process. It is by far the most important source of energy for life on Earth. Its diameter is about 1.39 million kilometers, or 109 times that of Earth, and its mass is about 330,000 times that of Earth. It accounts for about 99.86% of the total mass of the Solar System. Roughly three quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron.

Planet Class of astronomical body directly orbiting a star or stellar remnant

A planet is an astronomical body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.

Venus Second planet from the Sun in the Solar System

Venus is the second planet from the Sun, orbiting it every 224.7 Earth days. It has the longest rotation period of any planet in the Solar System and rotates in the opposite direction to most other planets. It does not have any natural satellites. It is named after the Roman goddess of love and beauty. It is the second-brightest natural object in the night sky after the Moon, reaching an apparent magnitude of −4.6 – bright enough to cast shadows at night and, rarely, visible to the naked eye in broad daylight. Orbiting within Earth's orbit, Venus is an inferior planet and never appears to venture far from the Sun; its maximum angular distance from the Sun (elongation) is 47.8°.

Contents

Transits of Venus are among the rarest of predictable astronomical phenomena. [1] They occur in a pattern that generally repeats every 243 years, with pairs of transits eight years apart separated by long gaps of 121.5 years and 105.5 years. The periodicity is a reflection of the fact that the orbital periods of Earth and Venus are close to 8:13 and 243:395 commensurabilities. [2] [3]

The orbital period is the time a given astronomical object takes to complete one orbit around another object, and applies in astronomy usually to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.

Commensurability is the property of two orbiting objects, such as planets, satellites, or asteroids, whose orbital periods are in a rational proportion.

The last transit of Venus was on 5 and 6 June 2012, and was the last Venus transit of the 21st century; the prior transit took place on 8 June 2004. The previous pair of transits were in December 1874 and December 1882. The next transits of Venus will take place on 10–11 December 2117, and 8 December 2125. [4] [5] [6]

Transit of Venus, 2012 transit of Venus across the Sun visible from Earth on 5-6 June 2012

The 2012 transit of Venus, when the planet Venus appeared as a small, dark spot passing across the face of the Sun, began at 22:09 UTC on 5 June 2012, and finished at 04:49 UTC on 6 June. Depending on the position of the observer, the exact times varied by up to ±7 minutes. Transits of Venus are among the rarest of predictable celestial phenomena and occur in pairs. Consecutive transits per pair are spaced 8 years apart, and consecutive pairs occur more than a century apart: The previous transit of Venus took place on 8 June 2004 ; the next pair of transits will occur on 10–11 December 2117 and in December 2125.

Transit of Venus, 2004 transit of Venus across the Sun visible from Earth on 8 June 2004

The second most recent transit of Venus observed from Earth took place on June 8, 2004. The event received significant attention, since it was the first Venus transit after the invention of broadcast media. No human alive at the time had witnessed a previous Venus transit since that transit occurred on December 6, 1882.

Venus transits are historically of great scientific importance as they were used to gain the first realistic estimates of the size of the Solar System. Observations of the 1639 transit, combined with the principle of parallax, provided an estimate of the distance between the Sun and the Earth that was more accurate than any other up to that time. The 2012 transit provided scientists with a number of other research opportunities, particularly in the refinement of techniques to be used in the search for exoplanets.

Solar System planetary system of the Sun

The Solar System is the gravitationally bound planetary system of the Sun and the objects that orbit it, either directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight planets, with the remainder being smaller objects, such as the five dwarf planets and small Solar System bodies. Of the objects that orbit the Sun indirectly—the moons—two are larger than the smallest planet, Mercury.

Transit of Venus, 1639 transit of Venus across the Sun visible from Earth in 1639

The first known observations and recording of a transit of Venus were made in 1639 by the English astronomers Jeremiah Horrocks and his friend and correspondent William Crabtree. The pair made their observations independently on 4 December that year ; Horrocks from Carr House, then in the village of Much Hoole, Lancashire, and Crabtree from his home in Broughton, near Manchester.

Parallax difference in the apparent position of an object viewed along two different lines of sight

Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight, and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby objects show a larger parallax than farther objects when observed from different positions, so parallax can be used to determine distances.

Conjunctions

Diagram of transits of Venus and the angle between the orbital planes of Venus and Earth Transit diagram angles.png
Diagram of transits of Venus and the angle between the orbital planes of Venus and Earth

Venus, with an orbit inclined by 3.4° relative to the Earth's, usually appears to pass under (or over) the Sun at inferior conjunction. [7] A transit occurs when Venus reaches conjunction with the Sun at or near one of its nodes—the longitude where Venus passes through the Earth's orbital plane (the ecliptic)—and appears to pass directly across the Sun. Although the inclination between these two orbital planes is only 3.4°, Venus can be as far as 9.6° from the Sun when viewed from the Earth at inferior conjunction. [8] Since the angular diameter of the Sun is about half a degree, Venus may appear to pass above or below the Sun by more than 18 solar diameters during an ordinary conjunction. [7]

Ecliptic apparent path of the Sun on the celestial sphere

The ecliptic is the mean plane of the apparent path in the Earth's sky that the Sun follows over the course of one year; it is the basis of the ecliptic coordinate system. This plane of reference is coplanar with Earth's orbit around the Sun. The ecliptic is not normally noticeable from Earth's surface because the planet's rotation carries the observer through the daily cycles of sunrise and sunset, which obscure the Sun's apparent motion against the background of stars during the year.

The angular diameter, angular size, apparent diameter, or apparent size is an angular measurement describing how large a sphere or circle appears from a given point of view. In the vision sciences, it is called the visual angle, and in optics, it is the angular aperture. The angular diameter can alternatively be thought of as the angle through which an eye or camera must rotate to look from one side of an apparent circle to the opposite side. Angular radius equals half the angular diameter.

Sequences of transits usually repeat every 243 years. After this period of time Venus and Earth have returned to very nearly the same point in their respective orbits. During the Earth's 243 sidereal orbital periods, which total 88,757.3 days, Venus completes 395 sidereal orbital periods of 224.701 days each, equal to 88,756.9 Earth days. This period of time corresponds to 152 synodic periods of Venus. [9]

A sidereal year is the time taken by the Earth to orbit the Sun once with respect to the fixed stars. Hence, it is also the time taken for the Sun to return to the same position with respect to the fixed stars after apparently travelling once around the ecliptic. It equals 365.256 363 004 SI days for the J2000.0 epoch.

The pattern of 105.5, 8, 121.5 and 8 years is not the only pattern that is possible within the 243-year cycle, because of the slight mismatch between the times when the Earth and Venus arrive at the point of conjunction. Prior to 1518, the pattern of transits was 8, 113.5 and 121.5 years, and the eight inter-transit gaps before the AD 546 transit were 121.5 years apart. The current pattern will continue until 2846, when it will be replaced by a pattern of 105.5, 129.5 and 8 years. Thus, the 243-year cycle is relatively stable, but the number of transits and their timing within the cycle will vary over time. [9] [10] Since the 243:395 Earth:Venus commensurability is only approximate, there are different sequences of transits occurring 243 years apart, each extending for several thousand years, which are eventually replaced by other sequences. For instance, there is a series which ended in 541 BC, and the series which includes 2117 only started in AD 1631. [9]

History of observation

"Venus Tablet of Ammisaduqa", a cuneiform clay tablet of astrological forecasts from the Neo-Assyrian period Venus Tablet of Ammisaduqa.jpg
"Venus Tablet of Ammisaduqa", a cuneiform clay tablet of astrological forecasts from the Neo-Assyrian period

Ancient and medieval history

Ancient Indian, Greek, Egyptian, Babylonian and Chinese observers knew of Venus and recorded the planet's motions. The early Greek astronomers called Venus by two names—Hesperus the evening star and Phosphorus the morning star. [11] Pythagoras is credited with realizing they were the same planet. There is no evidence that any of these cultures knew of the transits. Venus was important to ancient American civilizations, in particular for the Maya, who called it Noh Ek, "the Great Star" or Xux Ek, "the Wasp Star"; [12] they embodied Venus in the form of the god Kukulkán (also known as or related to Gukumatz and Quetzalcoatl in other parts of Mexico). In the Dresden Codex, the Maya charted Venus's full cycle, but despite their precise knowledge of its course, there is no mention of a transit. [13] However, it has been proposed that frescoes found at Mayapan may contain a pictorial representation of the 12th or 13th century transits. [14]

The Persian polymath Avicenna claimed to have observed Venus as a spot on the Sun. This is possible, as there was a transit on May 24, 1032, but Avicenna did not give the date of his observation, and modern scholars have questioned whether he could have observed the transit from his location at that time; he may have mistaken a sunspot for Venus. He used his transit observation to help establish that Venus was, at least sometimes, below the Sun in Ptolemaic cosmology, [15] i.e. the sphere of Venus comes before the sphere of the Sun when moving out from the Earth in the prevailing geocentric model. [16] [17]

1639 – first scientific observation

Jeremiah Horrocks makes the first observation of the transit of Venus in 1639, as imagined by the artist W. R. Lavender in 1903 JeremiahHorrocks.jpg
Jeremiah Horrocks makes the first observation of the transit of Venus in 1639, as imagined by the artist W. R. Lavender in 1903

In 1627, Johannes Kepler became the first person to predict a transit of Venus, by predicting the 1631 event. His methods were not sufficiently accurate to predict that the transit would not be visible in most of Europe, and as a consequence, nobody was able to use his prediction to observe the phenomenon. [18]

The first recorded observation of a transit of Venus was made by Jeremiah Horrocks from his home at Carr House in Much Hoole, near Preston in England, on 4 December 1639 (24 November under the Julian calendar then in use in England). His friend, William Crabtree, also observed this transit from Broughton, near Manchester. [19] Kepler had predicted transits in 1631 and 1761 and a near miss in 1639. Horrocks corrected Kepler's calculation for the orbit of Venus, realized that transits of Venus would occur in pairs 8 years apart, and so predicted the transit of 1639. [20] Although he was uncertain of the exact time, he calculated that the transit was to begin at approximately 15:00. Horrocks focused the image of the Sun through a simple telescope onto a piece of paper, where the image could be safely observed. After observing for most of the day, he was lucky to see the transit as clouds obscuring the Sun cleared at about 15:15, just half an hour before sunset. Horrocks's observations allowed him to make a well-informed guess as to the size of Venus, as well as to make an estimate of the mean distance between the Earth and the Sun — the astronomical unit. He estimated that distance to be 59.4 million miles (95.6  Gm, 0.639  AU) – about two thirds of the actual distance of 93 million miles (149.6 million km), but a more accurate figure than any suggested up to that time. The observations were not published until 1661, well after Horrocks's death. [20]

1761 and 1769

Diagram from Edmund Halley's 1716 paper to the Royal Society showing how the Venus transit could be used to calculate the distance between the Earth and the Sun Halley 1716 proposal of determining the parallax of the sun.jpg
Diagram from Edmund Halley's 1716 paper to the Royal Society showing how the Venus transit could be used to calculate the distance between the Earth and the Sun
Measuring Venus transit times to determine solar parallax Venus Transit & Parallax.svg
Measuring Venus transit times to determine solar parallax
Account of George III's observations of the 1769 transit. TransitOfVenus1769.png
Account of George III's observations of the 1769 transit.

In 1663 Scottish mathematician James Gregory had suggested in his Optica Promota that observations of a transit of the planet Mercury, at widely spaced points on the surface of the Earth, could be used to calculate the solar parallax and hence the astronomical unit using triangulation. Aware of this, a young Edmond Halley made observations of such a transit on 28 October O.S. 1677 from Saint Helena but was disappointed to find that only Richard Towneley in Burnley, Lancashire had made another accurate observation of the event whilst Gallet, at Avignon, simply recorded that it had occurred. Halley was not satisfied that the resulting calculation of the solar parallax at 45" was accurate.

In a paper published in 1691, and a more refined one in 1716, he proposed that more accurate calculations could be made using measurements of a transit of Venus, although the next such event was not due until 1761. [21] [22] Halley died in 1742, but in 1761 numerous expeditions were made to various parts of the world so that precise observations of the transit could be made in order to make the calculations as described by Halley—an early example of international scientific collaboration. [23] This collaboration was, however, underpinned by competition, the British, for example, being spurred to action only after they heard of French plans from Joseph-Nicolas Delisle. In an attempt to observe the first transit of the pair, astronomers from Britain, Austria and France traveled to destinations around the world, including Siberia, Newfoundland and Madagascar. [24] Most managed to observe at least part of the transit, but successful observations were made in particular by Jeremiah Dixon and Charles Mason at the Cape of Good Hope. [25] Less successful, at Saint Helena, were Nevil Maskelyne and Robert Waddington, although they put the voyage to good use by trialling the lunar-distance method of finding longitude. [26]

Diagrams from Mikhail Lomonosov's "The Appearance of Venus on the Sun, Observed at the St. Petersburg Imperial Academy of Sciences On 26 May 1761" Lomonosov 1761German Fig.jpg
Diagrams from Mikhail Lomonosov's "The Appearance of Venus on the Sun, Observed at the St. Petersburg Imperial Academy of Sciences On 26 May 1761"
Diagram from David Rittenhouse's observations of the 1769 transit of Venus Rittenhouse 1769 observation of Venus transit.jpg
Diagram from David Rittenhouse's observations of the 1769 transit of Venus

The existence of an atmosphere on Venus was concluded by Mikhail Lomonosov on the basis of his observation of the transit of Venus of 1761 from the Imperial Academy of Sciences of St. Petersburg. [27] He used a two-lens achromat refractor and a weak solar filter (smoked glass) and reported seeing a bump or bulge of light ("Lomonosov's arc") off the solar disc as Venus began to exit the Sun. Lomonosov attributed that effect to refraction of solar rays through an atmosphere; he also reported the appearance of a sliver around the part of Venus that had just entered the Sun's disk during the initial phase of transit. [28] In 2012, Pasachoff and Sheehan [29] reported, based on knowing what Venus's atmosphere would look like because of Pasachoff and Schneider's observations of the 2004 transit of Venus, that what Lomonosov reported was not Venus's atmosphere. To make a decisive test, a group of researchers carried out experimental reconstruction of Lomonosov's discovery of Venusian atmosphere with antique refractors during the transit of Venus on 5–6 June 2012. [30] They observed the "Lomonosov's arc" and other aureole effects due to Venus's atmosphere and concluded that Lomonosov's telescope was fully adequate to the task of detecting the arc of light around Venus off the Sun's disc during ingress or egress if proper experimental techniques as described by Lomonosov in his 1761 paper are employed. [31] [32]

For the 1769 transit, scientists traveled to Tahiti, [33] Norway, and locations in North America including Canada, New England, and San José del Cabo (Baja California, then under Spanish control). The Czech astronomer Christian Mayer was invited by Catherine the Great to observe the transit in Saint Petersburg with Anders Johan Lexell, while other members of the Russian Academy of Sciences went to eight other locations in the Russian Empire, under the general coordination of Stepan Rumovsky. [34] George III of the United Kingdom had the King's Observatory built near his summer residence at Richmond Lodge for him and his royal astronomer Stephen Demainbray to observe the transit. [35] [36] The Hungarian astronomer Maximilian Hell and his assistant János Sajnovics traveled to Vardø, Norway, delegated by Christian VII of Denmark. William Wales and Joseph Dymond made their observation in Hudson Bay, Canada, for the Royal Society. Observations were made by a number of groups in the British colonies in America. In Philadelphia, the American Philosophical Society erected three temporary observatories and appointed a committee, of which David Rittenhouse was the head. Observations were made by a group led by Dr. Benjamin West in Providence, Rhode Island, [37] and published in 1769. [38] The results of the various observations in the American colonies were printed in the first volume of the American Philosophical Society's Transactions, published in 1771. [39] Comparing the North American observations, William Smith published in 1771 a best value of the solar parallax of 8.48 to 8.49 arc-seconds, [40] which corresponds to an Earth-Sun distance of 24,000 times the Earth's radius, about 3% different from the correct value.

Observations were also made from Tahiti by James Cook and Charles Green at a location still known as "Point Venus". [41] This occurred on the first voyage of James Cook, [42] after which Cook explored New Zealand and Australia. This was one of five expeditions organised by the Royal Society and the Astronomer Royal Nevil Maskelyne.

Jean-Baptiste Chappe d'Auteroche went to San José del Cabo in what was then New Spain to observe the transit with two Spanish astronomers (Vicente de Doz and Salvador de Medina). For his trouble he died in an epidemic of yellow fever there shortly after completing his observations. [43] Only 9 of 28 in the entire party returned home alive. [44]

The "black drop effect" as recorded during the 1769 transit Venus Drawing.jpg
The "black drop effect" as recorded during the 1769 transit
The 1882 transit of Venus 1882 transit of venus.jpg
The 1882 transit of Venus

The unfortunate Guillaume Le Gentil spent eight years travelling in an attempt to observe either of the transits. His unsuccessful journey led to him losing his wife and possessions and being declared dead (his efforts became the basis of the play Transit of Venus by Maureen Hunter). [24] Under the influence of the Royal Society Ruđer Bošković travelled to Istanbul, but arrived too late. [45]

Unfortunately, it was impossible to time the exact moment of the start and end of the transit because of the phenomenon known as the "black drop effect". This effect was long thought to be due to Venus's thick atmosphere, and initially it was held to be the first real evidence that Venus had an atmosphere. However, recent studies demonstrate that it is an optical effect caused by the smearing of the image of Venus by turbulence in the Earth's atmosphere or imperfections in the viewing apparatus. [46] [47]

In 1771, using the combined 1761 and 1769 transit data, the French astronomer Jérôme Lalande calculated the astronomical unit to have a value of 153 million kilometers (±1 million km). The precision was less than had been hoped for because of the black drop effect, but still a considerable improvement on Horrocks's calculations. [24]

Maximilian Hell published the results of his expedition in 1770, in Copenhagen. [48] Based on the results of his own expedition, and of Wales and Cook, in 1772 he presented another calculation of the astronomical unit: 151.7 million kilometers. [49] [50] Lalande queried the accuracy and authenticity of the Hell expedition, but later he retreated in an article of Journal des sçavans , in 1778.

1874 and 1882

Transit observations in 1874 and 1882 allowed this value to be refined further. Three expeditions—from Germany, the United Kingdom and the United States—were sent to the Kerguelen Archipelago for the 1874 observations. [51] The American astronomer Simon Newcomb combined the data from the last four transits, and he arrived at a value of about 149.59 million kilometers (±0.31 million kilometers). Modern techniques, such as the use of radio telemetry from space probes, and of radar measurements of the distances to planets and asteroids in the Solar System, have allowed a reasonably accurate value for the astronomical unit (AU) to be calculated to a precision of about ±30 meters. As a result, the need for parallax calculations has been superseded. [24] [47]

2004 and 2012

Transit of Venus from Degania A, Israel, 2004 20040608 Venus Transit.JPG
Transit of Venus from Degania A, Israel, 2004
Solar Dynamics Observatory Ultra-high Definition View of the 2012 Transit of Venus
This visualization shows the orbital paths of Venus and Earth that led to this rare alignment on 5–6 June 2012

A number of scientific organizations headed by the European Southern Observatory (ESO) organized a network of amateur astronomers and students to measure Earth's distance from the Sun during the transit. [52] The participants' observations allowed a calculation of the astronomical unit (AU) of 149,608,708 km ± 11,835 km which had only a 0.007% difference to the accepted value. [53]

There was a good deal of interest in the 2004 transit as scientists attempted to measure the pattern of light dimming as Venus blocked out some of the Sun's light, in order to refine techniques that they hope to use in searching for extrasolar planets. [47] [54] Current methods of looking for planets orbiting other stars only work for a few cases: planets that are very large (Jupiter-like, not Earth-like), whose gravity is strong enough to wobble the star sufficiently for us to detect changes in proper motion or Doppler shift changes in radial velocity; Jupiter or Neptune sized planets very close to their parent star whose transit causes changes in the luminosity of the star; or planets which pass in front of background stars with the planet-parent star separation comparable to the Einstein ring and cause gravitational microlensing. [55] Measuring light intensity during the course of a transit, as the planet blocks out some of the light, is potentially much more sensitive, and might be used to find smaller planets. [47] However, extremely precise measurement is needed: for example, the transit of Venus causes the amount of light received from the Sun to drop by a fraction of 0.001 (that is, to 99.9% of its nominal value), and the dimming produced by small extrasolar planets will be similarly tiny. [56]

The 2012 transit provided scientists numerous research opportunities as well, in particular in regard to the study of exoplanets. Research of the 2012 Venus transit includes: [57] [58] [59]

Past and future transits

NASA maintains a catalog of Venus transits covering the period 2000 BCE to 4000 CE. [60] Currently, transits occur only in June or December (see table) and the occurrence of these events slowly drifts, becoming later in the year by about two days every 243-year cycle. [61] Transits usually occur in pairs, on nearly the same date eight years apart. This is because the length of eight Earth years is almost the same as 13 years on Venus, so every eight years the planets are in roughly the same relative positions. This approximate conjunction usually results in a pair of transits, but it is not precise enough to produce a triplet, since Venus arrives 22 hours earlier each time. The last transit not to be part of a pair was in 1396. The next will be in 3089; in 2854 (the second of the 2846/2854 pair), although Venus will just miss the Sun as seen from the Earth's equator, a partial transit will be visible from some parts of the southern hemisphere. [62]

Thus after 243 years the transits of Venus return. The 1874 transit is a member of the 243-year cycle #1. The 1882 transit is a member of #2. The 2004 transit is a member of #3 and the 2012 transit is a member of #4. The 2117 transit is a member of #1 and so on. However, the ascending node (December transits) of the orbit of Venus moves backwards after each 243 years so the transit of 2854 is the last member of series #3 instead of series #1. The descending node (June transits) moves forwards, so the transit of 3705 is the last member of #2. From −125,000 till +125,000 there are only about ten 243-year series at both nodes regarding all the transits of Venus in this very long time-span, because both nodes of the orbit of Venus move back and forward in time as seen from the Earth.

Past transits of Venus
Date(s) of
transit
Time (UTC)NotesTransit path
(HM Nautical
Almanac Office)
StartMidEnd
23 November 139615:4519:2723:09Last transit not part of a pair
25–26 May 151822:46
25 May
01:56
26 May
05:07
26 May
23 May 152616:1219:3521:48Last transit before invention of telescope
7 December 163103:5105:1906:47Predicted by Kepler
4 December 1639 14:5718:2521:54First transit observed by Horrocks and Crabtree
6 June 176102:0205:1908:37 Lomonosov, Chappe d'Auteroche and others observe from Russia; Mason and Dixon observe from the Cape of Good Hope. John Winthrop observes from St. John's, Newfoundland [63]
3–4 June 1769 19:15
3 June
22:25
3 June
01:35
4 June
Cook sent to Tahiti to observe the transit, Chappe to San José del Cabo, Baja California and Maximilian Hell to Vardø, Norway.
9 December 1874 01:4904:0706:26 Pietro Tacchini leads expedition to Muddapur, India. A French expedition goes to New Zealand's Campbell Island and a British expedition travels to Hawaii.
6 December 1882 13:5717:0620:15 John Philip Sousa composes a march, the "Transit of Venus", in honor of the transit.
8 June 2004 05:1308:2011:26Various media networks globally broadcast live video of the Venus transit.
5–6 June 2012
2012 Transit of Venus, path across Sun and associated data.png
22:09
5 June
01:29
6 June
04:49
6 June
Visible in its entirety from the Pacific and Eastern Asia, with the beginning of the transit visible from North America and the end visible from Europe. First transit while a spacecraft orbits Venus.
Visibility of 2012 Transit of Venus.png
Future transits of Venus
Date(s) of
transit
Time (UTC)NotesTransit path
(HM Nautical
Almanac Office)
StartMidEnd
10–11 December 211723:58
10 December
02:48
11 December
05:38
11 December
Visible in entirety in eastern China, Korea, Japan, Taiwan, Indonesia, and Australia. Partly visible on extreme U.S. West Coast, and in India, most of Africa, and the Middle East.
8 December 212513:1516:0118:48Visible in entirety in South America and the eastern U.S. Partly visible in Western U.S., Europe, and Africa.
11 June 224708:4211:3314:25Visible in entirety in Africa, Europe, and the Middle East. Partly visible in East Asia and Indonesia, and in North and South America.
9 June 22551:084:3808:08Visible in entirety in Russia, India, China, and western Australia. Partly visible in Africa, Europe, and the western U.S.
12–13 December 236022:32
12 December
1:44
13 December
04:56
13 December
Visible in entirety in Australia and most of Indonesia. Partly visible in Asia, Africa, and the western half of the Americas.
10 December 236812:2914:4517:01Visible in entirety in South America, western Africa, and the U.S. East Coast. Partly visible in Europe, the western U.S., and the Middle East.
12 June 249011:3914:1716:55Visible in entirety through most of the Americas, western Africa, and Europe. Partly visible in eastern Africa, the Middle East, and Asia.
10 June 249803:4807:2511:02Visible in entirety through most of Europe, Asia, the Middle East, and eastern Africa. Partly visible in eastern Americas, Indonesia, and Australia.

Over longer periods of time, new series of transits will start and old series will end. Unlike the saros series for lunar eclipses, it is possible for a transit series to restart after a hiatus. The transit series also vary much more in length than the saros series.

Grazing and simultaneous transits

Sometimes Venus only grazes the Sun during a transit. In this case it is possible that in some areas of the Earth a full transit can be seen while in other regions there is only a partial transit (no second or third contact). The last transit of this type was on 6 December 1631, and the next such transit will occur on 13 December 2611. [9] It is also possible that a transit of Venus can be seen in some parts of the world as a partial transit, while in others Venus misses the Sun. Such a transit last occurred on 19 November 541 BC, and the next transit of this type will occur on 14 December 2854. [9] These effects occur due to parallax, since the size of the Earth affords different points of view with slightly different lines of sight to Venus and the Sun. It can be demonstrated by closing an eye and holding a finger in front of a smaller more distant object; when you open the other eye and close the first, the finger will no longer be in front of the object.

The simultaneous occurrence of a transit of Mercury and a transit of Venus does occur, but extremely infrequently. Such an event last occurred on 22 September 373,173 BC and will next occur on 26 July 69,163, and again on 29 March 224,508. [64] [65] The simultaneous occurrence of a solar eclipse and a transit of Venus is currently possible, but very rare. The next solar eclipse occurring during a transit of Venus will be on 5 April 15,232. [64] The last time a solar eclipse occurred during a transit of Venus was on 1 November 15,607 BC. [66] The day after the Venerean transit of 3 June 1769 there was a total solar eclipse, [67] which was visible in Northern America, Europe and Northern Asia.

See also

Notes

  1. McClure, Bruce (29 May 2012). "Everything you need to know: Venus transit on June 5–6". EarthSky. Earthsky communications Inc. Retrieved 2 June 2012.
  2. Langford, Peter M. (September 1998). "Transits of Venus". La Société Guernesiaise Astronomy Section web site. Astronomical Society of the Channel Island of Guernsey. Retrieved 1 March 2012.
  3. Shortt, David (22 May 2012). "Some Details About Transits of Venus". Planetary Society web site. The Planetary Society . Retrieved 22 May 2012.
  4. Westfall, John E. (November 2003). "June 8, 2004: The Transit of Venus". Archived from the original on 8 August 2007. Retrieved 25 September 2006.
  5. Westfall, John E. "June 8, 2004: The Transit of Venus". alpo-astronomy.org. Retrieved 8 December 2009.
  6. Klotz, Irene (6 June 2012). "Venus transit offers opportunity to study planet's atmosphere (+video)". Christian Science Monitor. Retrieved 2012-06-06.
  7. 1 2 "Venus compared to Earth". European Space Agency. 2000. Retrieved 25 September 2006.
  8. Giesen, Juergen (2003). "Transit Motion Applet" . Retrieved 26 September 2006.
  9. 1 2 3 4 5 Espenak, Fred (11 February 2004). "Transits of Venus, Six Millennium Catalog: 2000 BCE to 4000 CE". NASA. Archived from the original on 24 June 2011.
  10. Walker, John. "Transits of Venus from Earth". Fourmilab Switzerland. Retrieved 21 September 2006.
  11. Rincon, Paul (7 November 2005). "Planet Venus: Earth's 'evil twin'". BBC. Retrieved 25 September 2006.
  12. Morley, Sylvanus G. (1994). The Ancient Maya (5th ed.). Stanford University Press. ISBN   978-0-8047-2310-7.
  13. Böhm, Bohumil; Böhm, Vladimir. "The Dresden Codex – the Book of Mayan Astronomy" . Retrieved 25 September 2006.
  14. Allen, Jesus Galindo; Allen, Christine (2005). Maya Observations of the 13th Century transits of Venus?. Proceedings of the International Astronomical Union. 196. IAU. pp. 124–137. Bibcode:2005tvnv.conf..124G. doi:10.1017/S1743921305001328. ISBN   978-0-521-84907-4. ISSN   1743-9213 . Retrieved 31 August 2013.
  15. Sally P. Ragep (2007). Thomas Hockey, ed. Ibn Sīnā: Abū ʿAlī al‐Ḥusayn ibn ʿAbdallāh ibn Sīnā. The Biographical Encyclopedia of Astronomers. Springer Science+Business Media. pp. 570–572.
  16. Goldstein, Bernard R. (1969). "Some Medieval Reports of Venus and Mercury Transits". Centaurus. 14 (1): 49–59. Bibcode:1969Cent...14...49G. doi:10.1111/j.1600-0498.1969.tb00135.x.
  17. Goldstein, Bernard R. (March 1972). "Theory and Observation in Medieval Astronomy". Isis . 63 (1): 39–47 [44]. doi:10.1086/350839.
  18. van Gent, Robert H. "Transit of Venus Bibliography" . Retrieved 11 September 2009.
  19. Kollerstrom, Nicholas (2004). "William Crabtree's Venus transit observation" (PDF). Proceedings IAU Colloquium No. 196, 2004. International Astronomical Union. Retrieved 10 May 2012.
  20. 1 2 Marston, Paul (2004). Jeremiah Horrocks—young genius and first Venus transit observer. University of Central Lancashire. pp. 14–37.
  21. Teets, D.A. (2003). "Transits of Venus and the Astronomical Unit". Mathematics Magazine. 76: 335–348. JSTOR   3654879.
  22. Halley, Edmund (1716). "A New Method of Determining the Parallax of the Sun, or His Distance from the Earth". Philosophical Transactions. XXIX: 454. Archived from the original on 24 June 2011.
  23. Leverington, David (2003). Babylon to Voyager and beyond: a history of planetary astronomy. Cambridge, UK: Cambridge University Press. pp. 140–142. ISBN   978-0-521-80840-8.
  24. 1 2 3 4 Pogge, Prof. Richard. "Lecture 26: How far to the Sun? The Venus Transits of 1761 & 1769" . Retrieved 25 September 2006.
  25. "Oxford Dictionary of National Biography: Jeremiah Dixon". Oxford University Press. Retrieved 22 February 2012.
  26. Howse, Derek (1989). Nevil Maskelyne: The Seaman's Astronomer. Cambridge: Cambridge University Press.
  27. Vladimir Shiltsev (1970). "Lomonosov's Discovery of Venus Atmosphere in 1761: English Translation of Original Publication with Commentaries". arXiv: 1206.3489 [physics.hist-ph].
  28. Marov, Mikhail Ya. (2004). "Mikhail Lomonosov and the discovery of the atmosphere of Venus during the 1761 transit". Proceedings of the International Astronomical Union. 2004: 209–219. Bibcode:2005tvnv.conf..209M. doi:10.1017/S1743921305001390.
  29. Sheehan, Jay; Sheehan, William (2012). "Lomonosov, the Discovery of Venus's Atmosphere, and Eighteenth-century Transits of Venus". Journal of Astronomical History and Heritage. 15 (1): 3. Bibcode:2012JAHH...15....3P.
  30. Alexandre Koukarine; Igor Nesterenko; Yuri Petrunin; Vladimir Shiltsev (2012-08-27). "Experimental Reconstruction of Lomonosov's Discovery of Venus's Atmosphere with Antique Refractors During the 2012 Transit of Venus". Solar System Research. 47 (6): 487–490. arXiv: 1208.5286 . Bibcode:2013SoSyR..47..487K. doi:10.1134/S0038094613060038.
  31. Shiltsev, V.; Nesterenko, I.; Rosenfeld, R. (2013). "Replicating the discovery of Venus's atmosphere". Physics Today. 66 (2): 64. Bibcode:2013PhT....66b..64S. doi:10.1063/pt.3.1894. Archived from the original on 2013-07-04.
  32. Koukarine, A.; et al. (2013). "Experimental Reconstruction of Lomonosov's Discovery of Venus's Atmosphere with Antique Refractors During the 2012 Transit of Venus". Solar System Research. 47 (6): 487–490. arXiv: 1208.5286 . Bibcode:2013SoSyR..47..487K. doi:10.1134/S0038094613060038.
  33. "James Cook and the Transit of Venus". NASA Headline News: Science News. nasa.gov. Retrieved 6 June 2012.
  34. Mayer, Christian; Parsons, James (1764). "An Account of the Transit of Venus: In a Letter to Charles Morton, M. D. Secret. R. S. from Christian Mayer, S. J. Translated from the Latin by James Parsons, M. D". Philosophical Transactions of the Royal Society. 54: 163–164. Bibcode:1764RSPT...54..163M. doi:10.1098/rstl.1764.0030.
  35. McLaughlin, Stewart (1992). "The Early History of Kew Observatory". Richmond History: Journal of the Richmond Local History Society . 13: 48–49. ISSN   0263-0958.
  36. Mayes, Julian (2004). "The History of Kew Observatory". Richmond History: Journal of the Richmond Local History Society . 25: 44–57. ISSN   0263-0958.
  37. Catherine B. Hurst, Choosing Providence, March 23, 2012. Retrieved 20 April 2016.
  38. West, Benjamin, Account of the Observation of Venus Upon the Sun, The Third Day of June, 1769, at Providence, in New-England, With some Account of the Use of Those Observations, John Carter, 1769 (retrieved 20 April 2016); with extended abstract published in Transactions of the American Philosophical Society, Volume 1, pp. 97–105
  39. American Philosophical Society, Transactions (Old Series, vol. 1, 1769–71): see Google Books link (retrieved 20 April 2016).
  40. W. Smith, "The Sun's Parallax deduced from a comparison of the Norriton and some other American Observations of the Transit of Venus 1769, with the Greenwich and other European Observations of the Same," Transactions of the American Philosophical Society, Vol 1 (1871), p. 54–72. Solar parallax is defined as "the angle which the Earth's semi-diameter [i.e., radius] subtends at the sun".
  41. See, for example, Stanley, David (2004). Moon Handbooks South Pacific (8th ed.). Avalon Travel Publishing. p. 175. ISBN   978-1-56691-411-6.
  42. Rhys, Ernest, ed. (1999). The Voyages of Captain Cook. Wordsworth Editions Ltd. pp. 29–30. ISBN   978-1-84022-100-8.
  43. In Memoriam Archived 5 December 2014 at the Wayback Machine French_Academy_of_Sciences
  44. Anderson, Mark (2012). The Day the World Discovered the Sun: An Extraordinary Story of Scientific Adventure and the Race to Track the Transit of Venus. Da Capo Press. ISBN   978-0-306-82038-0.
  45. Ruđer Bošković, Giornale di un viaggio da Constantinopoli in Polonia, 1762
  46. "Explanation of the Black-Drop Effect at Transits of Mercury and the Forthcoming Transit of Venus". AAS. 4 January 2004. Archived from the original on 10 July 2006. Retrieved 21 September 2006.
  47. 1 2 3 4 "Transits of Venus – Kiss of the goddess". The Economist. 27 May 2004. Retrieved 25 September 2006.
  48. R. P. Maximiliani Hell e S. J. – Observatio transitus Veneris ante discum Solis die 3. junii anno 1769. Wardoëhusii, auspiciis potentissimi ac clementissimi regis Daniae et Norvegiae, Christiani septimi, facta et societati reg. scientiarum Hafniensi die 24. Novembris 1769. Praelecta. Hafniae, typ. Orphanotrophii regii, excudit Gerhard Wiese Salicath, 82 p.
  49. Ephemerides astronomicae, anni 1773. Adjecta Collectione omnium observationum transitus Veneris ante discum Solis diei 3. Junii 1769. per orbem universum factorum, atque Appendice de parallaxi Solis ex observationibus tarnsitus Veneris anni 1769. Vindobonae, 1773, typ. Trattner, 311, 121 p.
  50. De parallaxi Solis ex observationibus transitus Veneris anni 1769. Vindobonae, 1772, typ. J. Trattner, 116 p.
  51. "1874 transit". Royal Society. Retrieved 2015-03-06.
  52. European Southern Observatory. "The Venus Transit 2004" . Retrieved 2012-06-06.
  53. European Southern Observatory. "Summing Up the Unique Venus Transit 2004 (VT-2004) Programme" . Retrieved 2012-06-06.
  54. McKee, Maggie (6 June 2004). "Extrasolar planet hunters eye Venus transit". New Scientist. Retrieved 27 September 2006.
  55. Gould, A.; et al. (10 June 2006). "Microlens OGLE-2005-BLG-169 Implies That Cool Neptune-like Planets Are Common". The Astrophysical Journal Letters. 644 (1): L37–L40. arXiv: astro-ph/0603276 . Bibcode:2006ApJ...644L..37G. doi:10.1086/505421.
  56. Espenak, Fred (18 June 2002). "2004 and 2012 Transits of Venus". NASA. Retrieved 11 May 2017.
  57. Wall, Michael (16 May 2012). "Venus Transit On June 5 May Bring New Alien Planet Discoveries". space.com. TheHuffingtonPost.com, Inc. Retrieved 21 May 2012.
  58. "Counting down to the Transit of Venus – our nearest exoplanet test-lab", phys.org, 5 March 2012
  59. "The Venus Twilight Experiment: Refraction and scattering phenomena during the transit of Venus on June 5–6, 2012", venustex.oca.eu.
  60. "NASA - Catalog of Transits of Venus". NASA. Retrieved 2016-05-26.
  61. Although transits occurred in May and November before 1631, this apparent jump in dates was due to the changeover from the Julian calendar to the Gregorian calendar on 15 October 1582
  62. Bell, Steve (2004). "Transits of Venus 1000 AD – 2700 AD". HM Nautical Almanac Office. Archived from the original on 7 September 2006. Retrieved 25 September 2006.
  63. Winthrop, John (1764). "Observation of the Transit of Venus, June 6, 1761, at St. John's, Newfoundland". Philosophical Transactions of the Royal Society. 54: 279–283. doi:10.1098/rstl.1764.0048.
  64. 1 2 "Hobby Q&A", Sky&Telescope, August 2004, p. 138
  65. Espenak, Fred (21 April 2005). "Transits of Mercury, Seven Century Catalog: 1601 CE to 2300 CE". NASA. Archived from the original on 28 September 2006. Retrieved 27 September 2006.
  66. Jeliazkov, Jeliazko. "Simultaneous occurrence of solar eclipse and a transit". transit.savage-garden.org. Archived from the original on 27 July 2011. Retrieved 11 August 2009.
  67. de La Lande, Jérôme; Messier, Charles (1769). "Observations of the Transit of Venus on 3 June 1769, and the Eclipse of the Sun on the Following Day, Made at Paris, and Other Places. Extracted from Letters Addressed from M. De la Lande, of the Royal Academy of Sciences at Paris, and F. R. S. to the Astronomer Royal; And from a Letter Addressed from M. Messier to Mr. Magalhaens". Philosophical Transactions. 59: 374–377. Bibcode:1769RSPT...59..374D. doi:10.1098/rstl.1769.0050.

Further reading

General

June 2012 transit

Related Research Articles

Astronomical unit mean distance between Earth and the Sun, common length reference in astronomy

The astronomical unit is a unit of length, roughly the distance from Earth to the Sun. However, that distance varies as Earth orbits the Sun, from a maximum (aphelion) to a minimum (perihelion) and back again once a year. Originally conceived as the average of Earth's aphelion and perihelion, since 2012 it has been defined as exactly 149597870700 metres or about 150 million kilometres. The astronomical unit is used primarily for measuring distances within the Solar System or around other stars. It is also a fundamental component in the definition of another unit of astronomical length, the parsec.

Transit of Mercury a transit of Mercury across the Sun

A transit of Mercury across the Sun takes place when the planet Mercury passes directly between the Sun and a superior planet, becoming visible against the solar disk. During a transit, Mercury appears as a tiny black dot moving across the disk of the Sun.

Gliese 436 is a red dwarf approximately 31.8 light-years away in the zodiac constellation of Leo. It has an apparent visual magnitude of 10.67, which is much too faint to be seen with the naked eye. However, it can be viewed with even a modest telescope of 2.4 in (6 cm) aperture. In 2004, the existence of an extrasolar planet, Gliese 436b, was verified as orbiting the star. This planet was later discovered to transit its host star.

William Crabtree British astronomer

William Crabtree (1610–1644) was an astronomer, mathematician, and merchant from Broughton, then in the Hundred of Salford, Lancashire, England. He was one of only two people to observe and record the first predicted transit of Venus in 1639.

Observations and explorations of Venus

Observations of the planet Venus include those in antiquity, telescopic observations, and from visiting spacecraft. Spacecraft have performed various flybys, orbits, and landings on Venus, including balloon probes that floated in the atmosphere of Venus. Study of the planet is aided by its relatively close proximity to the Earth, compared to other planets, but the surface of Venus is obscured by an atmosphere opaque to visible light.

Neith (hypothetical moon) hypothetical natural satellite of Venus

Neith is a hypothetical natural satellite of Venus reportedly sighted by Giovanni Cassini in 1672 and by several other astronomers in following years. The first supposed sighting of this moon was in 1650. It was 'observed' up to 30 times by astronomers until 1770, when there were no new sightings and it was not found during the transit of Venus in 1761 and 1769.

Atmosphere of Venus atmosphere of the planet Venus

The atmosphere of Venus is the layer of gases surrounding Venus. It is composed primarily of carbon dioxide and is much denser and hotter than that of Earth. The temperature at the surface is 740 K, and the pressure is 93 bar (9.3 MPa), roughly the pressure found 900 m (3,000 ft) underwater on Earth. The Venusian atmosphere supports opaque clouds made of sulfuric acid, making optical Earth-based and orbital observation of the surface impossible. Information about the topography has been obtained exclusively by radar imaging. Aside from carbon dioxide, the other main component is nitrogen. Other chemical compounds are present only in trace amounts.

Methods of detecting exoplanets

Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the extrasolar planets reported as of April 2014 have been observed directly, with even fewer being resolved from their host star.

Super-Earth An extrasolar planet with a mass higher than Earths, but substantially lower than the Solar Systems ice giants

A super-Earth is an extrasolar planet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 15 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, as suggested by MIT professor Sara Seager, although "mini-Neptunes" is a more common term.

Exoplanetology, or exoplanetary science, is an integrated field of astronomical science dedicated to the search for and study of exoplanets. It employs an interdisciplinary approach which includes astrobiology, astrophysics, astronomy, astrochemistry, astrogeology, geochemistry, and planetary science.

Jeremiah Horrocks English astronomer

Jeremiah Horrocks, sometimes given as Jeremiah Horrox, was an English astronomer. He was the first person to demonstrate that the Moon moved around the Earth in an elliptical orbit; and he was the only person to predict the transit of Venus of 1639, an event which he and his friend William Crabtree were the only two people to observe and record.

Jean-Baptiste Chappe dAuteroche French astronomer

Jean-Baptiste Chappe d'Auteroche was a French astronomer, best known for his observations of the transits of Venus in 1761 and 1769.

History of Mars observation

The recorded history of observation of the planet Mars dates back to the era of the ancient Egyptian astronomers in the 2nd millennium BCE. Chinese records about the motions of Mars appeared before the founding of the Zhou Dynasty. Detailed observations of the position of Mars were made by Babylonian astronomers who developed arithmetic techniques to predict the future position of the planet. The ancient Greek philosophers and Hellenistic astronomers developed a geocentric model to explain the planet's motions. Measurements of Mars' angular diameter can be found in ancient Greek and Indian texts. In the 16th century, Nicolaus Copernicus proposed a heliocentric model for the Solar System in which the planets follow circular orbits about the Sun. This was revised by Johannes Kepler, yielding an elliptic orbit for Mars that more accurately fitted the observational data.

1769 Transit of Venus observed from Tahiti

On June 3, 1769, British navigator Captain James Cook, British naturalist Joseph Banks, British astronomer Charles Green and Swedish naturalist Daniel Solander recorded the transit of Venus on the island of Tahiti during Cook's first voyage around the world. During a transit, Venus appears as a small black disc travelling across the Sun. This unusual astronomical phenomenon takes place in a pattern that repeats itself every 243 years. It includes two transits that are eight years apart, separated by breaks of 121.5 and 105.5 years. These men, along with a crew of scientists, were commissioned by the Royal Society of London for the primary purpose of viewing the transit of Venus. Not only would their findings help expand scientific knowledge, it would help with navigation by accurately calculating the observer's longitude. At this time, longitude was difficult to determine and not always precise. A "secret" mission that followed the transit included the exploration of the South Pacific to find the legendary Terra Australis Incognita or "unknown land of the South."

Venus has an orbit with a semi-major axis of 0.723 au, and an eccentricity of 0.007. The low eccentricity and comparatively small size of its orbit give Venus the least range in distance between perihelion and aphelion of the planets: 1.46 Gm. The planet orbits the Sun once every 225 days and travels 4.54 au in doing so, giving an average orbital speed of 35 km/s (78,000 mph).

Anders Planman was a Finnish astronomer, professor of physics and mathematician. He was one of the first people to make systematical astronomical observations in Finland.