Radiochromic film

Last updated

A piece of radiochromic film that has been exposed to a beam of x-rays (note the dark dot in the middle) Radiochromic film in hand.jpg
A piece of radiochromic film that has been exposed to a beam of x-rays (note the dark dot in the middle)

Radiochromic film is a type of self-developing film typically used in the testing and characterisation of radiographic equipment such as CT scanners and radiotherapy linacs. The film contains a dye which changes colour when exposed to ionising radiation, allowing the level of exposure and beam profile to be characterised. [1] Unlike x-ray film no developing process is required and results can be obtained almost instantly, while it is insensitive to visible light (making handling easier). [2]

Contents

Mechanism

For medical dosimetry "gafchromic dosimetry film (...) is arguably the most widely used commercial product". [3] Several types of gafchromic film are marketed with differing properties. [4] One type, MD-55, is made up of layers of polyester substrate with active emulsion layers adhered (approximately 16μm thick). [2] The active layer consists of polycrystalline, substituted-diacetylene and the colour change occurs due to "progressive 1,4-trans additions as polyconjugations along the ladder-like polymer chains". [5] [3] [6]

Usage

Radiochromic films have been in general use since the late 1960s, although the general principle has been known about since the 19th century. [3] [7]

Profiling

Radiochromic film can provide high spatial resolution information about the distribution of radiation. Depending on the scanning technique, sub-millimetre resolution can be achieved. [4]

Dosimetry

Unlike many other types of radiation detector, radiochromic film can be used for absolute dosimetry where information about absorbed dose is obtained directly. [3] It is typically scanned, for example using a standard flat bed scanner, to provide accurate quantification of the optical density and therefore degree of exposure. Gafchromic film has been shown to provide measurements accurate to 2% over doses of 0.2–100 Gray (Gy). [8]

Related Research Articles

<span class="mw-page-title-main">Radiation therapy</span> Therapy using ionizing radiation, usually to treat cancer

Radiation therapy or radiotherapy is a treatment using ionizing radiation, generally provided as part of cancer therapy to either kill or control the growth of malignant cells. It is normally delivered by a linear particle accelerator. Radiation therapy may be curative in a number of types of cancer if they are localized to one area of the body, and have not spread to other parts. It may also be used as part of adjuvant therapy, to prevent tumor recurrence after surgery to remove a primary malignant tumor. Radiation therapy is synergistic with chemotherapy, and has been used before, during, and after chemotherapy in susceptible cancers. The subspecialty of oncology concerned with radiotherapy is called radiation oncology. A physician who practices in this subspecialty is a radiation oncologist.

<span class="mw-page-title-main">Dosimeter</span> Device measuring ionizing radiation exposure

A radiation dosimeter is a device that measures dose uptake of external ionizing radiation. It is worn by the person being monitored when used as a personal dosimeter, and is a record of the radiation dose received. Modern electronic personal dosimeters can give a continuous readout of cumulative dose and current dose rate, and can warn the wearer with an audible alarm when a specified dose rate or a cumulative dose is exceeded. Other dosimeters, such as thermoluminescent or film types, require processing after use to reveal the cumulative dose received, and cannot give a current indication of dose while being worn.

<span class="mw-page-title-main">CT scan</span> Medical imaging procedure using X-rays to produce cross-sectional images

A computed tomography scan is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or radiology technologists.

Medical physics deals with the application of the concepts and methods of physics to the prevention, diagnosis and treatment of human diseases with a specific goal of improving human health and well-being. Since 2008, medical physics has been included as a health profession according to International Standard Classification of Occupation of the International Labour Organization.

<span class="mw-page-title-main">Brachytherapy</span> Type of radiation therapy

Brachytherapy is a form of radiation therapy where a sealed radiation source is placed inside or next to the area requiring treatment. Brachy is Greek for short. Brachytherapy is commonly used as an effective treatment for cervical, prostate, breast, esophageal and skin cancer and can also be used to treat tumours in many other body sites. Treatment results have demonstrated that the cancer-cure rates of brachytherapy are either comparable to surgery and external beam radiotherapy (EBRT) or are improved when used in combination with these techniques. Brachytherapy can be used alone or in combination with other therapies such as surgery, EBRT and chemotherapy.

The gray is the unit of ionizing radiation dose in the International System of Units (SI), defined as the absorption of one joule of radiation energy per kilogram of matter.

Radiation dosimetry in the fields of health physics and radiation protection is the measurement, calculation and assessment of the ionizing radiation dose absorbed by an object, usually the human body. This applies both internally, due to ingested or inhaled radioactive substances, or externally due to irradiation by sources of radiation.

A monitor unit (MU) is a measure of machine output from a clinical accelerator for radiation therapy such as a linear accelerator or an orthovoltage unit. Monitor units are measured by monitor chambers, which are ionization chambers that measure the dose delivered by a beam and are built into the treatment head of radiotherapy linear accelerators.

The ionization chamber is the simplest type of gaseous ionisation detector, and is widely used for the detection and measurement of many types of ionizing radiation, including X-rays, gamma rays, alpha particles and beta particles. Conventionally, the term "ionization chamber" refers exclusively to those detectors which collect all the charges created by direct ionization within the gas through the application of an electric field. It uses the discrete charges created by each interaction between the incident radiation and the gas to produce an output in the form of a small direct current. This means individual ionising events cannot be measured, so the energy of different types of radiation cannot be differentiated, but it gives a very good measurement of overall ionising effect.

Digital radiography is a form of radiography that uses x-ray–sensitive plates to directly capture data during the patient examination, immediately transferring it to a computer system without the use of an intermediate cassette. Advantages include time efficiency through bypassing chemical processing and the ability to digitally transfer and enhance images. Also, less radiation can be used to produce an image of similar contrast to conventional radiography.

<span class="mw-page-title-main">Radiation treatment planning</span> In cancer or tumor treatments

In radiotherapy, radiation treatment planning (RTP) is the process in which a team consisting of radiation oncologists, radiation therapist, medical physicists and medical dosimetrists plan the appropriate external beam radiotherapy or internal brachytherapy treatment technique for a patient with cancer.

<span class="mw-page-title-main">Tomotherapy</span> Type of radiation therapy

Tomotherapy is a type of radiation therapy treatment machine. In tomotherapy a thin radiation beam is modulated as it rotates around the patient, while they are moved through the bore of the machine. The name comes from the use of a strip-shaped beam, so that only one “slice” of the target is exposed at any one time by the radiation. The external appearance of the system and movement of the radiation source and patient can be considered analogous to a CT scanner, which uses lower doses of radiation for imaging. Like a conventional machine used for X-ray external beam radiotherapy, a linear accelerator generates the radiation beam, but the external appearance of the machine, the patient positioning, and treatment delivery is different. Conventional linacs do not work on a slice-by-slice basis but typically have a large area beam which can also be resized and modulated.

FLUKA is a fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter. FLUKA has many applications in particle physics, high energy experimental physics and engineering, shielding, detector and telescope design, cosmic ray studies, dosimetry, medical physics, radiobiology. A recent line of development concerns hadron therapy.

Image-guided radiation therapy is the process of frequent imaging, during a course of radiation treatment, used to direct the treatment, position the patient, and compare to the pre-therapy imaging from the treatment plan. Immediately prior to, or during, a treatment fraction, the patient is localized in the treatment room in the same position as planned from the reference imaging dataset. An example of IGRT would include comparison of a cone beam computed tomography (CBCT) dataset, acquired on the treatment machine, with the computed tomography (CT) dataset from planning. IGRT would also include matching planar kilovoltage (kV) radiographs or megavoltage (MV) images with digital reconstructed radiographs (DRRs) from the planning CT.

The computed tomography dose index (CTDI) is a commonly used radiation exposure index in X-ray computed tomography (CT), first defined in 1981. The unit of CTDI is the gray (Gy) and it can be used in conjunction with patient size to estimate the absorbed dose. The CTDI and absorbed dose may differ by more than a factor of two for small patients such as children.

Wolfgang Axel Tomé is a physicist working in medicine as a researcher, inventor, and educator. He is noted for his contributions to the use of photogrammetry in high precision radiation therapy; his work on risk adaptive radiation therapy which is based on the risk level for recurrence in tumor sub-volumes using biological objective functions; and the development of hippocampal avoidant cranial radiation therapy techniques to alleviate hippocampal-dependent neurocognitive impairment following cranial irradiation.

<span class="mw-page-title-main">X-ray detector</span> Instrument that can measure properties of X-rays

X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays.

Jeffrey Harold Siewerdsen is an American physicist and biomedical engineer who is a Professor of Imaging Physics at The University of Texas MD Anderson Cancer Center as well as Biomedical Engineering, Computer Science, Radiology, and Neurosurgery at Johns Hopkins University.He is among the original inventors of cone-beam CT-guided radiotherapy as well as weight-bearing cone-beam CT for musculoskeletal radiology and orthopedic surgery. His work also includes the early development of flat-panel detectors on mobile C-arms for intraoperative cone-beam CT in image-guided surgery. He developed early models for the signal and noise performance of flat-panel detectors and later extended such analysis to dual-energy imaging and 3D imaging performance in cone-beam CT. He founded the ISTAR Lab in the Department of Biomedical Engineering, the Carnegie Center for Surgical Innovation at Johns Hopkins Hospital, and the Surgical Data Science Program at the Institute for Data Science in Oncology at The University of Texas MD Anderson Cancer Center.

<span class="mw-page-title-main">Shakardokht Jafari</span>

Shakardokht (Shakar) Jafari is a Medical Physicist and an award-winning innovator based at the Surrey Technology Centre. She developed an efficient and low cost method of measuring a medical dose of radiation.

Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Dual-energy imaging, i.e. imaging at two energy levels, is a special case of spectral imaging and is still the most widely used terminology, but the terms "spectral imaging" and "spectral CT" have been coined to acknowledge the fact that photon-counting detectors have the potential for measurements at a larger number of energy levels.

References

  1. Jones, Deric P. (2010). Biomedical sensors (1st ed.). New York: Momentum Press. p. 177. ISBN   9781606500569.
  2. 1 2 Pawlicki, Todd; Scanderbeg, Daniel J.; Starkschall, George (2016). Hendee's Radiation Therapy Physics (4th ed.). John Wiley & Sons. p. 68. ISBN   9781118575260.
  3. 1 2 3 4 Butson, Martin J; Yu, Peter K.N; Cheung, Tsang; Metcalfe, Peter (September 2003). "Radiochromic film for medical radiation dosimetry". Materials Science and Engineering: R: Reports. 41 (3–5): 61–120. CiteSeerX   10.1.1.705.3331 . doi:10.1016/S0927-796X(03)00034-2.
  4. 1 2 Niroomand-Rad, Azam; Blackwell, Charles Robert; Coursey, Bert M.; Gall, Kenneth P.; Galvin, James M.; McLaughlin, William L.; Meigooni, Ali S.; Nath, Ravinder; Rodgers, James E.; Soares, Christopher G. (November 1998). "Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55". Medical Physics. 25 (11): 2093–2115. Bibcode:1998MedPh..25.2093N. doi:10.1118/1.598407. PMID   9829234.
  5. Clough, Roger L. (1995). "Radiochromic Solid-State Polymerization Reaction". Irradiation of polymers: fundamentals and technological applications. ACS Symposium Series. Vol. 620 (2nd ed.). Washington, DC: American Chemical Society. pp. 152–166. doi:10.1021/bk-1996-0620.ch011. ISBN   9780841233775.
  6. Ali, I.; Costescu, C.; Vicic, M.; Dempsey, J. F.; Williamson, J. F. (9 July 2003). "Dependence of radiochromic film optical density post-exposure kinetics on dose and dose fractionation". Medical Physics. 30 (8): 1958–1967. Bibcode:2003MedPh..30.1958A. doi:10.1118/1.1587611. PMID   12945961.
  7. McLaughlin, W.L.; Yun-Dong, Chen; Soares, C.G.; Miller, A.; Van Dyk, G.; Lewis, D.F. (April 1991). "Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 302 (1): 165–176. Bibcode:1991NIMPA.302..165M. doi:10.1016/0168-9002(91)90506-L.
  8. Devic, Slobodan (July 2011). "Radiochromic film dosimetry: Past, present, and future". Physica Medica. 27 (3): 122–134. doi:10.1016/j.ejmp.2010.10.001. PMID   21050785.

Further reading

Williams, Matthew; Metcalfe, Peter (5 May 2011). "Radiochromic Film Dosimetry and its Applications in Radiotherapy". AIP Conference Proceedings. 1345 (1): 75–99. Bibcode:2011AIPC.1345...75W. doi:10.1063/1.3576160. ISSN   0094-243X.