Rayleigh's quotient in vibrations analysis

Last updated

The Rayleigh's quotient represents a quick method to estimate the natural frequency of a multi-degree-of-freedom vibration system, in which the mass and the stiffness matrices are known.

The eigenvalue problem for a general system of the form

in absence of damping and external forces reduces to

The previous equation can be written also as the following:

where , in which represents the natural frequency, M and K are the real positive symmetric mass and stiffness matrices respectively.

For an n-degree-of-freedom system the equation has n solutions , that satisfy the equation

By multiplying both sides of the equation by and dividing by the scalar , it is possible to express the eigenvalue problem as follow:

for m = 1, 2, 3, ..., n.

In the previous equation it is also possible to observe that the numerator is proportional to the potential energy while the denominator depicts a measure of the kinetic energy. Moreover, the equation allow us to calculate the natural frequency only if the eigenvector (as well as any other displacement vector) is known. For academic interests, if the modal vectors are not known, we can repeat the foregoing process but with and taking the place of and , respectively. By doing so we obtain the scalar , also known as Rayleigh's quotient: [1]

Therefore, the Rayleigh's quotient is a scalar whose value depends on the vector and it can be calculated with good approximation for any arbitrary vector as long as it lays reasonably far from the modal vectors , i = 1,2,3,...,n.

Since, it is possible to state that the vector differs from the modal vector by a small quantity of first order, the correct result of the Rayleigh's quotient will differ not sensitively from the estimated one and that's what makes this method very useful. A good way to estimate the lowest modal vector , that generally works well for most structures (even though is not guaranteed), is to assume equal to the static displacement from an applied force that has the same relative distribution of the diagonal mass matrix terms. The latter can be elucidated by the following 3-DOF example.

Example – 3DOF

As an example, we can consider a 3-degree-of-freedom system in which the mass and the stiffness matrices of them are known as follows:

To get an estimation of the lowest natural frequency we choose a trial vector of static displacement obtained by loading the system with a force proportional to the masses:

Thus, the trial vector will become

that allow us to calculate the Rayleigh's quotient:

Thus, the lowest natural frequency, calculated by means of Rayleigh's quotient is:

Using a calculation tool is pretty fast to verify how much it differs from the "real" one. In this case, using MATLAB, it has been calculated that the lowest natural frequency is: that has led to an error of using the Rayleigh's approximation, that is a remarkable result.

The example shows how the Rayleigh's quotient is capable of getting an accurate estimation of the lowest natural frequency. The practice of using the static displacement vector as a trial vector is valid as the static displacement vector tends to resemble the lowest vibration mode.

Related Research Articles

Transverse wave Moving wave whose oscillations are perpendicular to the direction of the wave

In physics, a transverse wave is a wave whose oscillations are perpendicular to the direction of the wave's advance. This is in contrast to a longitudinal wave which travels in the direction of its oscillations.

Lorentz group Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.

Normal mode Pattern of oscillating motion in a system

A normal mode of an oscillating system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions. In music, normal modes of vibrating instruments are called "harmonics" or "overtones".

In physics, a wave vector is a vector which helps describe a wave. Like any vector, it has a magnitude and direction, both of which are important. Its magnitude is either the wavenumber or angular wavenumber of the wave, and its direction is ordinarily the direction of wave propagation.

The Newmark-beta method is a method of numerical integration used to solve certain differential equations. It is widely used in numerical evaluation of the dynamic response of structures and solids such as in finite element analysis to model dynamic systems. The method is named after Nathan M. Newmark, former Professor of Civil Engineering at the University of Illinois at Urbana–Champaign, who developed it in 1959 for use in structural dynamics. The semi-discretized structural equation is a second order ordinary differential equation system,

Screw theory Mathematical formulation of vector pairs used in physics (rigid body dynamics)

Screw theory is the algebraic calculation of pairs of vectors, such as forces and moments or angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawell Ball in 1876 for application in kinematics and statics of mechanisms.

In mathematics, a complex structure on a real vector space V is an automorphism of V that squares to the minus identity, −I. Such a structure on V allows one to define multiplication by complex scalars in a canonical fashion so as to regard V as a complex vector space.

Love wave Horizontally polarized surface waves

In elastodynamics, Love waves, named after Augustus Edward Hough Love, are horizontally polarized surface waves. The Love wave is a result of the interference of many shear waves (S-waves) guided by an elastic layer, which is welded to an elastic half space on one side while bordering a vacuum on the other side. In seismology, Love waves are surface seismic waves that cause horizontal shifting of the Earth during an earthquake. Augustus Edward Hough Love predicted the existence of Love waves mathematically in 1911. They form a distinct class, different from other types of seismic waves, such as P-waves and S-waves, or Rayleigh waves. Love waves travel with a lower velocity than P- or S- waves, but faster than Rayleigh waves. These waves are observed only when there is a low velocity layer overlying a high velocity layer/ sub–layers.

The Rayleigh–Ritz method is a direct numerical method of approximating eigenvalue, originated in the context of solving physical boundary value problems and named after Lord Rayleigh and Walther Ritz.

In linear algebra, an eigenvector or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by , is the factor by which the eigenvector is scaled.

In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process.

In mathematics, the generalized minimal residual method (GMRES) is an iterative method for the numerical solution of an indefinite nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this vector.

Parametric oscillator

A parametric oscillator is a driven harmonic oscillator in which the oscillations are driven by varying some parameter of the system at some frequency, typically different from the natural frequency of the oscillator. A simple example of a parametric oscillator is a child pumping a playground swing by periodically standing and squatting to increase the size of the swing's oscillations. The child's motions vary the moment of inertia of the swing as a pendulum. The "pump" motions of the child must be at twice the frequency of the swing's oscillations. Examples of parameters that may be varied are the oscillator's resonance frequency and damping .

Pronys method

Prony analysis was developed by Gaspard Riche de Prony in 1795. However, practical use of the method awaited the digital computer. Similar to the Fourier transform, Prony's method extracts valuable information from a uniformly sampled signal and builds a series of damped complex exponentials or damped sinusoids. This allows for the estimation of frequency, amplitude, phase and damping components of a signal.

Structural dynamics is a type of structural analysis which covers the behavior of a structure subjected to dynamic loading. Dynamic loads include people, wind, waves, traffic, earthquakes, and blasts. Any structure can be subjected to dynamic loading. Dynamic analysis can be used to find dynamic displacements, time history, and modal analysis.

In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

Vibration Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin vibrationem. The oscillations may be periodic, such as the motion of a pendulum—or random, such as the movement of a tire on a gravel road.

Vibration of plates

The vibration of plates is a special case of the more general problem of mechanical vibrations. The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two. This suggests that a two-dimensional plate theory will give an excellent approximation to the actual three-dimensional motion of a plate-like object, and indeed that is found to be true.

Dynamic Substructuring (DS) is an engineering tool used to model and analyse the dynamics of mechanical systems by means of its components or substructures. Using the dynamic substructuring approach one is able to analyse the dynamic behaviour of substructures separately and to later on calculate the assembled dynamics using coupling procedures. Dynamic substructuring has several advantages over the analysis of the fully assembled system:

References

  1. Meirovitch, Leonard (2003). Fundamentals of Vibration. McGraw-Hill Education. p. 806. ISBN   9780071219839.