Real ear measurement

Last updated
Real ear measurement
RealEarMeasurement.png
Real ear measurement showing probe microphone in place and RIC hearing aid.
Synonyms Insitu- or Probe microphone measurement [1]
Purposemeasure of sound pressure in ear

Real ear measurement is the measurement of sound pressure level in a patient's ear canal developed when a hearing aid is worn. It is measured with the use of a silicone probe tube inserted in the canal connected to a microphone outside the ear and is done to verify that the hearing aid is providing suitable amplification for a patient's hearing loss. [2] The American Speech–Language–Hearing Association (ASHA) and American Academy of Audiology (AAA) recommend real ear measures as the preferred method of verifying the performance of hearing aids. [3] [4] Used by audiologists and other hearing healthcare practitioners in the process of hearing aid fitting, real ear measures are the most reliable and efficient method for assessing the benefit provided by the amplification. [5] Measurement of the sound level in the ear canal allows the clinician to make informed judgements on audibility of sound in the ear and the effectiveness of hearing aid treatment.

Contents

The use of real ear measurement to assess the performance of hearing aids is covered in the ANSI specification Methods of Measurement of Real-Ear Performance Characteristics of Hearing Aids, ANSI S3.46-2013 (a revision of ANSI S3.46-1997). [6]

History

The first commercially produced real ear measurement available was made by Rastronics. [7] Help soon arrived. In the early 1980s, the first computerized probe-tube microphone system, the Rastronics CCI-10 (developed in Denmark by Steen Rasmussen), entered the U.S. market (Nielsen and Rasmussen, 1984). This system had a silicone tube attached to the microphone (the transmission of sound through this tube was part of the calibration process), which eliminated the need to place the microphone itself in the ear canal. By early 1985, three or four different manufactures had introduced this new type of computerized probemicrophone equipment, and this hearing aid verification procedure became part of the standard protocol for many audiology clinics.

Method

Silicone probe tubes used for real ear measurement. RealEarProbeTubes.png
Silicone probe tubes used for real ear measurement.

First, the clinician will examine the ear canal with the use of an otoscope to ensure no wax or other debris will interfere with the positioning of the probe tube. The probe tube is placed with the tip approximately 6 mm (1/4 inch) from the tympanic membrane. Next the hearing aid is put in place. The REM system will typically produce a test stimulus from a loudspeaker situated 12–15 inches (30–38 cm) from the patient's head and simultaneously measure the output in the ear canal to determine how much amplification the hearing aid is providing. [8]

Insertion gain

The traditional method of real ear measurement is known as insertion gain, which is the difference between the sound pressure level measured near the ear drum with a hearing aid in place, and the sound pressure level measured in the unaided ear. First a measurement is made with the probe tube in the open ear (Real Ear Unaided Response, or REUR), then a second one is made using the same test signal with the hearing aid in place and turned on (Real Ear Aided Response, or REAR). The difference between these two results is the insertion gain. This gain can be matched to targets produced by various prescriptive formula based on the patient's audiogram or individual hearing loss. [9]

Speech mapping

Speech mapping (also known as output-based measures) involves testing with a speech or speech-like signal. The hearing aid is adjusted so that the speech is amplified to the approximate middle of the patient's residual auditory area (the amplitude range between the patient's hearing threshold and upper limit of comfort) while observing a real-time spectrum display of the speech in the patient's ear canal. Many multi-channel hearing aids allow each frequency channel to be adjusted separately. The aim is to find a good compromise between intelligibility and loudness discomfort. [10] This approach to hearing aid testing is implemented in most current real ear systems and there has been a significant increase in audiologists selecting to verify using the output method. [11] Using a real speech signal to test a hearing aid has the advantage that features that may need to be disabled in other test approaches can be left active, and the effects of these features in normal use are included in the test. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Hearing aid</span> Electroacoustic device

A hearing aid is a device designed to improve hearing by making sound audible to a person with hearing loss. Hearing aids are classified as medical devices in most countries, and regulated by the respective regulations. Small audio amplifiers such as personal sound amplification products (PSAPs) or other plain sound reinforcing systems cannot be sold as "hearing aids".

<span class="mw-page-title-main">Hearing test</span> Evaluation of the sensitivity of a persons sense of hearing

A hearing test provides an evaluation of the sensitivity of a person's sense of hearing and is most often performed by an audiologist using an audiometer. An audiometer is used to determine a person's hearing sensitivity at different frequencies. There are other hearing tests as well, e.g., Weber test and Rinne test.

<span class="mw-page-title-main">Earplug</span> Device to protect ears from loud noises

An earplug is a device that is inserted in the ear canal to protect the user's ears from loud noises, intrusion of water, foreign bodies, dust or excessive wind. Since they reduce the sound volume, earplugs are often used to help prevent hearing loss and tinnitus.

<span class="mw-page-title-main">Audiology</span> Branch of science that studies hearing, balance, and related disorders

Audiology is a branch of science that studies hearing, balance, and related disorders. Audiologists treat those with hearing loss and proactively prevent related damage. By employing various testing strategies, audiologists aim to determine whether someone has normal sensitivity to sounds. If hearing loss is identified, audiologists determine which portions of hearing are affected, to what degree, and where the lesion causing the hearing loss is found. If an audiologist determines that a hearing loss or vestibular abnormality is present, they will provide recommendations for interventions or rehabilitation.

<span class="mw-page-title-main">Conductive hearing loss</span> Medical condition

Conductive hearing loss (CHL) occurs when there is a problem transferring sound waves anywhere along the pathway through the outer ear, tympanic membrane (eardrum), or middle ear (ossicles). If a conductive hearing loss occurs in conjunction with a sensorineural hearing loss, it is referred to as a mixed hearing loss. Depending upon the severity and nature of the conductive loss, this type of hearing impairment can often be treated with surgical intervention or pharmaceuticals to partially or, in some cases, fully restore hearing acuity to within normal range. However, cases of permanent or chronic conductive hearing loss may require other treatment modalities such as hearing aid devices to improve detection of sound and speech perception.

Audiometry is a branch of audiology and the science of measuring hearing acuity for variations in sound intensity and pitch and for tonal purity, involving thresholds and differing frequencies. Typically, audiometric tests determine a subject's hearing levels with the help of an audiometer, but may also measure ability to discriminate between different sound intensities, recognize pitch, or distinguish speech from background noise. Acoustic reflex and otoacoustic emissions may also be measured. Results of audiometric tests are used to diagnose hearing loss or diseases of the ear, and often make use of an audiogram.

<span class="mw-page-title-main">Bone-anchored hearing aid</span>

A bone-anchored hearing aid (BAHA) is a type of hearing aid based on bone conduction. It is primarily suited for people who have conductive hearing losses, unilateral hearing loss, single-sided deafness and people with mixed hearing losses who cannot otherwise wear 'in the ear' or 'behind the ear' hearing aids. They are more expensive than conventional hearing aids, and their placement involves invasive surgery which carries a risk of complications, although when complications do occur, they are usually minor.

Adaptive feedback cancellation is a common method of cancelling audio feedback in a variety of electro-acoustic systems such as digital hearing aids. The time varying acoustic feedback leakage paths can only be eliminated with adaptive feedback cancellation. When an electro-acoustic system with an adaptive feedback canceller is presented with a correlated input signal, a recurrent distortion artifact, entrainment is generated. There is a difference between the system identification and feedback cancellation.

A contralateral routing of signals (CROS) hearing aid is a type of hearing aid that is used to treat a condition in which the patient has no usable hearing in one ear and minimal hearing loss or normal hearing in the other ear. This is referred to as single sided deafness.

<span class="mw-page-title-main">Pure-tone audiometry</span>

Pure-tone audiometry is the main hearing test used to identify hearing threshold levels of an individual, enabling determination of the degree, type and configuration of a hearing loss and thus providing a basis for diagnosis and management. Pure-tone audiometry is a subjective, behavioural measurement of a hearing threshold, as it relies on patient responses to pure tone stimuli. Therefore, pure-tone audiometry is only used on adults and children old enough to cooperate with the test procedure. As with most clinical tests, standardized calibration of the test environment, the equipment and the stimuli is needed before testing proceeds. Pure-tone audiometry only measures audibility thresholds, rather than other aspects of hearing such as sound localization and speech recognition. However, there are benefits to using pure-tone audiometry over other forms of hearing test, such as click auditory brainstem response (ABR). Pure-tone audiometry provides ear specific thresholds, and uses frequency specific pure tones to give place specific responses, so that the configuration of a hearing loss can be identified. As pure-tone audiometry uses both air and bone conduction audiometry, the type of loss can also be identified via the air-bone gap. Although pure-tone audiometry has many clinical benefits, it is not perfect at identifying all losses, such as ‘dead regions’ of the cochlea and neuropathies such as auditory processing disorder (APD). This raises the question of whether or not audiograms accurately predict someone's perceived degree of disability.

Electric acoustic stimulation (EAS) is the use of a hearing aid and a cochlear implant technology together in the same ear. EAS is intended for people with high-frequency hearing loss, who can hear low-pitched sounds but not high-pitched ones. The hearing aid acoustically amplifies low-frequency sounds, while the cochlear implant electrically stimulates the middle- and high-frequency sounds. The inner ear then processes the acoustic and electric stimuli simultaneously, to give the patient the perception of sound.

The occlusion effect occurs when an object fills the outer portion of a person's ear canal, causing that person to perceive echo-like "hollow" or "booming" sounds generated from their own voice.

Aural rehabilitation is the process of identifying and diagnosing a hearing loss, providing different types of therapies to clients who are hard of hearing, and implementing different amplification devices to aid the client’s hearing abilities. Aural rehab includes specific procedures in which each therapy and amplification device has as its goal the habilitation or rehabilitation of persons to overcome the handicap (disability) caused by a hearing impairment or deafness.

<span class="mw-page-title-main">Earmold</span>

An earmold is a device worn inserted into the ear for sound conduction or hearing protection. Earmolds are anatomically shaped and can be produced in different sizes for general use or specially cast from particular ear forms. Some users specify how hard or soft they want their mold to be, an audiologist can also suggest this. As a conductor, it improves sound transmission to eardrums. This is an essential feature to diminish feedback paths in hearing aids and assure better intelligibility in noisy-environment communication. The main goal in wearing earmolds is to attain better user comfort and efficiency. Earmolds often turn yellow and stiff with age, and thus need replacement on a regular basis. Traditionally, the job of making earmolds is very time-consuming and skillful; each one is made individually in a molding process. However, new digital ear laser scanners can accelerate this process.

<span class="mw-page-title-main">Assistive listening device</span>

An assistive listening device (ALD) is part of a system used to improve hearing ability for people in a variety of situations where they are unable to distinguish speech in noisy environments. Often, in a noisy or crowded room it is almost impossible for an individual who is hard of hearing to distinguish one voice among many. This is often exacerbated by the effect of room acoustics on the quality of perceived speech. Hearing aids are able to amplify and process these sounds, and improve the speech to noise ratio. However, if the sound is too distorted by the time it reaches the listener, even the best hearing aids will struggle to unscramble the signal. Assistive listening devices offer a more adaptive alternative to hearing aids, but can be more complex and cumbersome.

<span class="mw-page-title-main">Miracle-Ear</span>

Miracle-Ear, Inc. is a hearing aid and hearing care company consisting of a network of franchised and corporately-owned retail locations. The company is a subsidiary of Amplifon, the worldwide leader in hearing care and hearing aid retail based in Milan, Italy. Miracle-Ear's U.S. headquarters are located in Minneapolis, Minnesota. As of 2023 it has more than 1,500 locations in the United States, and it is the best-known hearing aid brand in the U.S.

In live sound mixing, gain before feedback (GBF) is a practical measure of how much a microphone can be amplified in a sound reinforcement system before causing audio feedback. In audiology, GBF is a measure of hearing aid performance. In both fields the amount of gain is measured in decibels at or just below the point at which the sound from the speaker driver re-enters the microphone and the system begins to ring or feed back. Potential acoustic gain (PAG) is a calculated figure representing gain that a system can support without feeding back.

<span class="mw-page-title-main">History of hearing aids</span>

The first hearing aid was created in the 17th century. The movement toward modern hearing aids began with the creation of the telephone, and the first electric hearing aid was created in 1898. By the late 20th century, the digital hearing aid was distributed to the public commercially. Some of the first hearing aids were external hearing aids. External hearing aids directed sounds in front of the ear and blocked all other noises. The apparatus would fit behind or in the ear.

Personal Sound Amplification Products, also known as "Personal Sound Amplification Devices," or by the acronym PSAP, are defined by the U.S. Food and Drug Administration as wearable electronic products that are intended to amplify sounds for people who are not Deaf or Hard of Hearing. They are not hearing aids, which the FDA describes as intended to compensate for hearing loss. According to Dr. Mann of the FDA, choosing a PSAP as a substitute for a hearing aid can lead to more damage to your hearing.

Cartilage conduction is a pathway by which sound signals are transmitted to the inner ear. In 2004, Hiroshi Hosoi discovered this pathway and named “cartilage conduction”. Hearing by cartilage conduction is distinct from conventional sound-conduction pathways, such as air or bone, because it is realized by touching a transducer on the aural cartilage and does not involve the vibration of the skull bone. Therefore, cartilage conduction is referred to as the “third auditory pathway”.

References

  1. Stach, Brad (2003). Comprehensive Dictionary of Audiology (2nd ed.). Clifton Park NY: Thompson Delmar Learning. p. 167. ISBN   978-1-4018-4826-2.
  2. Valente, Michael; John E. Tecca (1994). "Chapter 5". Strategies for Selecting and Verifying Hearing Aid Fittings. NY: Thieme Medical Publishers. p. 88. ISBN   978-0-86577-500-8.
  3. ASHA Ad Hoc Committee on Hearing Aid Selection and Fitting (1998). "Guidelines for Hearing Aid Fitting for Adults". American Journal of Audiology. 7 (5–13): 5–13. doi:10.1044/1059-0889.0701.05.
  4. Valente, Michael; Harvey Abrams; Darcy Benson; Theresa Chisolm; Dave Citron; Dennis Hampton, Angela Loavenbruck, Todd Ricketts, Helena Solodar, Robert Sweetow (2007). "Guidelines for the Audiologic Management of Adult Hearing Impairment" (PDF). American Academy of Audiology. Archived from the original (PDF) on 25 July 2013. Retrieved 3 February 2014.{{cite web}}: CS1 maint: multiple names: authors list (link)
  5. Jack Katz; Larry Medwetsky; Robert Burkard; Linda Hood (2009). "Chapter 38, Hearing Aid Fitting for Adults: Selection, Fitting, Verification, and Validation". Handbook of Clinical Audiology (6th ed.). Baltimore MD: Lippincott Williams & Wilkins. p. 858. ISBN   978-0-7817-8106-0.
  6. ANSI/ASA Standard S3.46-2013 "Methods of Measurement of Real-Ear Performance Characteristics of Hearing Aids," Acoustical Society of America, Melville, New York, http://acousticalsociety.org/
  7. Venema, Theodore (2014). "Real Ear Measures Today: Do We Truly Follow Fitting Methods?" (PDF). Canadian Hearing Report. 9 (4): 10.
  8. Valente, Michael; John E. Tecca (1994). "5. Use of Real-Ear Measurements To Verify Hearing Aid Fittings". Strategies for Selecting and Verifying Hearing Aid Fittings. NY: Thieme Medical Publishers. pp. 93–95. ISBN   978-0-86577-500-8.
  9. Valente, Michael; George A. Gates (1994). "13. Aural Rehabilitation for Individuals with Severe and Profound Hearing Impairment: Hearing Aids, Cochlear Implants, Counseling, and Training". Strategies for Selecting and Verifying Hearing Aid Fittings. NY: Thieme Medical Publishers. p. 277. ISBN   978-0-86577-500-8.
  10. Moore, Brian C.J. (August 2006). "Speech mapping is a valuable tool for fitting and counseling patients". Hearing Journal. 59 (8): 26, 28, 30. doi: 10.1097/01.HJ.0000286371.07550.5b . S2CID   61832139.
  11. Jack Katz; Larry Medwetsky; Robert Burkard; Linda Hood (2009). "Chapter 38, Hearing Aid Fitting for Adults: Selection, Fitting, Verification, and Validation". Handbook of Clinical Audiology (6th ed.). Baltimore MD: Lippincott Williams & Wilkins. p. 859. ISBN   978-0-7817-8106-0.
  12. Ross, Mark (2007). "Evaluating the Performance of a Hearing Aid in the Real-Ear". Rehabilitation Engineering Research Center on Hearing Enhancement. Gallaudet University. Retrieved 6 February 2014.