Rebecca Doerge

Last updated
Rebecca Whitbeck Doerge
NationalityAmerican
Occupationacademic

Rebecca Whitbeck Doerge is an American researcher in statistical bioinformatics, known for her research on quantitative traits. She is currently the provost at Rensselaer Polytechnic Institute. [1] She was previously the Trent and Judith Anderson Distinguished Professor of Statistics at Purdue University and then dean of the Mellon College of Science at Carnegie Mellon University, with joint appointments in the departments of biology and statistics. [2]

Contents

Education and career

Doerge was born in Stamford, New York. After graduating in mathematics from the University of Utah in 1986, she earned a master's degree in statistics from Utah in 1988, advised there by Simon Tavaré. [3] She then completed a Ph.D. in statistics from North Carolina State University in 1993. Her dissertation, supervised by Bruce Weir, was Statistical Methods for Locating Quantitative Trait Loci with Molecular Markers. [3] [4]

After postdoctoral research with Gary Churchill at Cornell University, Doerge joined the Purdue University faculty in 1995. She chaired the Department of Statistics there from 2010 to 2015, and was appointed as Anderson Distinguished Professor in 2011. [3] She moved to Carnegie Mellon to become dean in 2016. [2]

Awards and honors

Doerge became a fellow of the American Association for the Advancement of Science and of the American Statistical Association in 2007. [3]

Selected publications

Books

Articles

Related Research Articles

<span class="mw-page-title-main">Dominance (genetics)</span> One gene variant masking the effect of another in the other copy of the gene

In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second is called recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a mutation in one of the genes, either new or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child. Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance, such as incomplete dominance, in which a gene variant has a partial effect compared to when it is present on both chromosomes, and co-dominance, in which different variants on each chromosome both show their associated traits.

Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction. Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart. In other words, the nearer two genes are on a chromosome, the lower the chance of recombination between them, and the more likely they are to be inherited together. Markers on different chromosomes are perfectly unlinked, although the penetrance of potentially deleterious alleles may be influenced by the presence of other alleles, and these other alleles may be located on other chromosomes than that on which a particular potentially deleterious allele is located.

<span class="mw-page-title-main">Heinz College</span> Public policy school of Carnegie Mellon University

The Heinz College of Information Systems and Public Policy, also known as Heinz College, is the public policy and information college of Carnegie Mellon University in Pittsburgh, Pennsylvania. It consists of the School of Information Systems and Management and the School of Public Policy and Management. The college is named after CMU's former instructor and the later U.S. Senator John Heinz from Pennsylvania.

<span class="mw-page-title-main">Mellon College of Science</span> College of Carnegie Mellon University

The Mellon College of Science (MCS) is part of Carnegie Mellon University in Pittsburgh, Pennsylvania, US. The college is named for the Mellon family, founders of the Mellon Institute of Industrial Research, a predecessor of Carnegie Mellon University.

A quantitative trait locus (QTL) is a locus that correlates with variation of a quantitative trait in the phenotype of a population of organisms. QTLs are mapped by identifying which molecular markers correlate with an observed trait. This is often an early step in identifying the actual genes that cause the trait variation.

Genetic architecture is the underlying genetic basis of a phenotypic trait and its variational properties. Phenotypic variation for quantitative traits is, at the most basic level, the result of the segregation of alleles at quantitative trait loci (QTL). Environmental factors and other external influences can also play a role in phenotypic variation. Genetic architecture is a broad term that can be described for any given individual based on information regarding gene and allele number, the distribution of allelic and mutational effects, and patterns of pleiotropy, dominance, and epistasis.

A polygene is a member of a group of non-epistatic genes that interact additively to influence a phenotypic trait, thus contributing to multiple-gene inheritance, a type of non-Mendelian inheritance, as opposed to single-gene inheritance, which is the core notion of Mendelian inheritance. The term "monozygous" is usually used to refer to a hypothetical gene as it is often difficult to distinguish the effect of an individual gene from the effects of other genes and the environment on a particular phenotype. Advances in statistical methodology and high throughput sequencing are, however, allowing researchers to locate candidate genes for the trait. In the case that such a gene is identified, it is referred to as a quantitative trait locus (QTL). These genes are generally pleiotropic as well. The genes that contribute to type 2 diabetes are thought to be mostly polygenes. In July 2016, scientists reported identifying a set of 355 genes from the last universal common ancestor (LUCA) of all organisms living on Earth.

<span class="mw-page-title-main">Neurogenetics</span> Study of role of genetics in the nervous system

Neurogenetics studies the role of genetics in the development and function of the nervous system. It considers neural characteristics as phenotypes, and is mainly based on the observation that the nervous systems of individuals, even of those belonging to the same species, may not be identical. As the name implies, it draws aspects from both the studies of neuroscience and genetics, focusing in particular how the genetic code an organism carries affects its expressed traits. Mutations in this genetic sequence can have a wide range of effects on the quality of life of the individual. Neurological diseases, behavior and personality are all studied in the context of neurogenetics. The field of neurogenetics emerged in the mid to late 20th century with advances closely following advancements made in available technology. Currently, neurogenetics is the center of much research utilizing cutting edge techniques.

Daniel Berg is a educator, scientist and was the fifteenth president of Rensselaer Polytechnic Institute.

Expression quantitative trait loci (eQTLs) are genomic loci that explain variation in expression levels of mRNAs.

In genetics, association mapping, also known as "linkage disequilibrium mapping", is a method of mapping quantitative trait loci (QTLs) that takes advantage of historic linkage disequilibrium to link phenotypes to genotypes, uncovering genetic associations.

GeneNetwork is a combined database and open-source bioinformatics data analysis software resource for systems genetics. This resource is used to study gene regulatory networks that link DNA sequence differences to corresponding differences in gene and protein expression and to variation in traits such as health and disease risk. Data sets in GeneNetwork are typically made up of large collections of genotypes and phenotypes from groups of individuals, including humans, strains of mice and rats, and organisms as diverse as Drosophila melanogaster, Arabidopsis thaliana, and barley. The inclusion of genotypes makes it practical to carry out web-based gene mapping to discover those regions of genomes that contribute to differences among individuals in mRNA, protein, and metabolite levels, as well as differences in cell function, anatomy, physiology, and behavior.

A recombinant inbred strain or recombinant inbred line (RIL) is an organism with chromosomes that incorporate an essentially permanent set of recombination events between chromosomes inherited from two or more inbred strains. F1 and F2 generations are produced by intercrossing the inbred strains; pairs of the F2 progeny are then mated to establish inbred strains through long-term inbreeding.

<span class="mw-page-title-main">Michael Goddard</span>

Michael Edward "Mike" Goddard is a professorial fellow in animal genetics at the University of Melbourne, Australia.

<span class="mw-page-title-main">Genetic variance</span> Biological concept

Genetic variance is a concept outlined by the English biologist and statistician Ronald Fisher in his fundamental theorem of natural selection. In his 1930 book The Genetical Theory of Natural Selection, Fisher postulates that the rate of change of biological fitness can be calculated by the genetic variance of the fitness itself. Fisher tried to give a statistical formula about how the change of fitness in a population can be attributed to changes in the allele frequency. Fisher made no restrictive assumptions in his formula concerning fitness parameters, mate choices or the number of alleles and loci involved.

Mary Ellen Johnston Bock is a retired American statistician, now a professor emeritus at Purdue University after becoming the first female full professor of statistics and the first female chair of the department there. She was president of the American Statistical Association in 2007.

Kathryn M. Roeder is an American statistician known for her development of statistical methods to uncover the genetic basis of complex disease and her contributions to mixture models, semiparametric inference, and multiple testing. Roeder holds positions as professor of statistics and professor of computational biology at Carnegie Mellon University, where she leads a project focused on discovering genes associated with autism.

<span class="mw-page-title-main">Complex traits</span>

Complex traits, also known as quantitative traits, are traits that do not behave according to simple Mendelian inheritance laws. More specifically, their inheritance cannot be explained by the genetic segregation of a single gene. Such traits show a continuous range of variation and are influenced by both environmental and genetic factors. Compared to strictly Mendelian traits, complex traits are far more common, and because they can be hugely polygenic, they are studied using statistical techniques such as quantitative genetics and quantitative trait loci (QTL) mapping rather than classical genetics methods. Examples of complex traits include height, circadian rhythms, enzyme kinetics, and many diseases including diabetes and Parkinson's disease. One major goal of genetic research today is to better understand the molecular mechanisms through which genetic variants act to influence complex traits.

Genomic control (GC) is a statistical method that is used to control for the confounding effects of population stratification in genetic association studies. The method was originally outlined by Bernie Devlin and Kathryn Roeder in a 1999 paper. It involves using a set of anonymous genetic markers to estimate the effect of population structure on the distribution of the chi-square statistic. The distribution of the chi-square statistics for a given allele that is suspected to be associated with a given trait can then be compared to the distribution of the same statistics for an allele that is expected not to be related to the trait. The method is supposed to involve the use of markers that are not linked to the marker being tested for a possible association. In theory, it takes advantage of the tendency of population structure to cause overdispersion of test statistics in association analyses. The genomic control method is as robust as family-based designs, despite being applied to population-based data. It has the potential to lead to a decrease in statistical power to detect a true association, and it may also fail to eliminate the biasing effects of population stratification. A more robust form of the genomic control method can be performed by expressing the association being studied as two Cochran–Armitage trend tests, and then applying the method to each test separately.

In quantitative genetics, QST is a statistic intended to measure the degree of genetic differentiation among populations with regard to a quantitative trait. It was developed by Ken Spitze in 1993. Its name reflects that QST was intended to be analogous to the fixation index for a single genetic locus (FST). QST is often compared with FST of neutral loci to test if variation in a quantitative trait is a result of divergent selection or genetic drift, an analysis known as QST–FST comparisons.

References

  1. "Rebecca W. Doerge Named Provost of RPI", RPI News, June 21, 2023, retrieved 2023-11-27
  2. 1 2 "Rebecca Doerge Appointed Dean of Mellon College of Science", Carnegie Mellon University News, May 25, 2016, retrieved 2017-10-26
  3. 1 2 3 4 Curriculum vitae (PDF), January 12, 2016, retrieved 2017-10-26
  4. Rebecca Doerge at the Mathematics Genealogy Project
  5. Reviews for Statistics at the Bench: Ian White (February 2011), Genetics Research 93 (1): 91, doi:10.1017/S0016672310000698; Craig Paul (May 2011), Biochemistry and Molecular Biology Education 39: 242–243, doi:10.1002/bmb.20497.