Redshift conjecture

Last updated

In mathematics, more specifically in chromatic homotopy theory, the redshift conjecture states, roughly, that algebraic K-theory has chromatic level one higher than that of a complex-oriented ring spectrum R. [1] It was formulated by John Rognes in a lecture at Schloss Ringberg, Germany, in January 1999, and made more precise by him in a lecture at Mathematische Forschungsinstitut Oberwolfach, Germany, in September 2000. [2] In July 2022, Burklund, Schlank and Yuan announced a solution of a version of the redshift conjecture for arbitrary -ring spectra, after Hahn and Wilson did so earlier in the case of the truncated Brown-Peterson spectra BP<n>. [3]

Contents


Related Research Articles

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

In mathematics, a von Neumann regular ring is a ring R such that for every element a in R there exists an x in R with a = axa. One may think of x as a "weak inverse" of the element a; in general x is not uniquely determined by a. Von Neumann regular rings are also called absolutely flat rings, because these rings are characterized by the fact that every left R-module is flat.

In stable homotopy theory, a branch of mathematics, Morava K-theory is one of a collection of cohomology theories introduced in algebraic topology by Jack Morava in unpublished preprints in the early 1970s. For every prime number p (which is suppressed in the notation), it consists of theories K(n) for each nonnegative integer n, each a ring spectrum in the sense of homotopy theory. Johnson & Wilson (1975) published the first account of the theories.

The Novikov conjecture is one of the most important unsolved problems in topology. It is named for Sergei Novikov who originally posed the conjecture in 1965.

In mathematics, elliptic cohomology is a cohomology theory in the sense of algebraic topology. It is related to elliptic curves and modular forms.

<span class="mw-page-title-main">Jack Morava</span> American mathematician

Jack Johnson Morava is an American homotopy theorist at Johns Hopkins University.

Friedhelm Waldhausen is a German mathematician known for his work in algebraic topology. He made fundamental contributions in the fields of 3-manifolds and (algebraic) K-theory.

<span class="mw-page-title-main">Michael J. Hopkins</span> American mathematician

Michael Jerome Hopkins is an American mathematician known for work in algebraic topology.

In mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory.

In mathematics, more specifically category theory, a quasi-category is a generalization of the notion of a category. The study of such generalizations is known as higher category theory.

In mathematics, the Ravenel conjectures are a set of mathematical conjectures in the field of stable homotopy theory posed by Douglas Ravenel at the end of a paper published in 1984. It was earlier circulated in preprint. The problems involved have largely been resolved, with all but the "telescope conjecture" being proved in later papers by others. The telescope conjecture is now generally believed not to be true, though there are some conflicting claims concerning it in the published literature, and is taken to be an open problem. Ravenel's conjectures exerted influence on the field through the founding of the approach of chromatic homotopy theory.

<span class="mw-page-title-main">Homotopy type theory</span> Type theory in logic and mathematics

In mathematical logic and computer science, homotopy type theory refers to various lines of development of intuitionistic type theory, based on the interpretation of types as objects to which the intuition of (abstract) homotopy theory applies.

Derived algebraic geometry is a branch of mathematics that generalizes algebraic geometry to a situation where commutative rings, which provide local charts, are replaced by either differential graded algebras, simplicial commutative rings or -ring spectra from algebraic topology, whose higher homotopy groups account for the non-discreteness of the structure sheaf. Grothendieck's scheme theory allows the structure sheaf to carry nilpotent elements. Derived algebraic geometry can be thought of as an extension of this idea, and provides natural settings for intersection theory of singular algebraic varieties and cotangent complexes in deformation theory, among the other applications.

In algebraic geometry, a derived stack is, roughly, a stack together with a sheaf of commutative ring spectra. It generalizes a derived scheme. Derived stacks are the "spaces" studied in derived algebraic geometry.

In algebraic K-theory, the K-theory of a categoryC (usually equipped with some kind of additional data) is a sequence of abelian groups Ki(C) associated to it. If C is an abelian category, there is no need for extra data, but in general it only makes sense to speak of K-theory after specifying on C a structure of an exact category, or of a Waldhausen category, or of a dg-category, or possibly some other variants. Thus, there are several constructions of those groups, corresponding to various kinds of structures put on C. Traditionally, the K-theory of C is defined to be the result of a suitable construction, but in some contexts there are more conceptual definitions. For instance, the K-theory is a 'universal additive invariant' of dg-categories and small stable ∞-categories.

In mathematics, chromatic homotopy theory is a subfield of stable homotopy theory that studies complex-oriented cohomology theories from the "chromatic" point of view, which is based on Quillen's work relating cohomology theories to formal groups. In this picture, theories are classified in terms of their "chromatic levels"; i.e., the heights of the formal groups that define the theories via the Landweber exact functor theorem. Typical theories it studies include: complex K-theory, elliptic cohomology, Morava K-theory and tmf.

In algebraic topology, a G-spectrum is a spectrum with an action of a (finite) group.

In mathematics, the Bass–Quillen conjecture relates vector bundles over a regular Noetherian ring A and over the polynomial ring . The conjecture is named for Hyman Bass and Daniel Quillen, who formulated the conjecture.

Gabriele Vezzosi is an Italian mathematician, born in Florence (Italy). His main interest is algebraic geometry.

References

  1. Lawson, Tyler (2013). "Future directions" (PDF). Talbot 2013: Chromatic Homotopy Theory. MIT Talbot Workshop.
  2. Rognes, John (2000). "Algebraic K-theory of finitely presented ring spectra" (PDF). Oberwolfach talk.
  3. Burklund, Schlank, Yuan (2022). The Chromatic Nullstellensatz
Notes

Further reading