Reeve tetrahedra

Last updated
The Reeve tetrahedra for r = 1, 2 and 3 have the same number of interior (i ) and boundary (b) lattice points but different volumes (V ). Reeve tetrahedrons.svg
The Reeve tetrahedra for r = 1, 2 and 3 have the same number of interior (i) and boundary (b) lattice points but different volumes (V).
Reeve tetrahedra for different choices of the parameter r Tetraedro de Reeve.gif
Reeve tetrahedra for different choices of the parameter r

In geometry, the Reeve tetrahedra are a family of polyhedra in three-dimensional space with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, r) where r is a positive integer. They are named after John Reeve, who in 1957 used them to show that higher-dimensional generalizations of Pick's theorem do not exist. [1]

Contents

Counterexample to generalizations of Pick's theorem

All vertices of a Reeve tetrahedron are lattice points (points whose coordinates are all integers). No other lattice points lie on the surface or in the interior of the tetrahedron. The volume of the Reeve tetrahedron with vertex (1, 1, r) is r/6. In 1957 Reeve used this tetrahedron to show that there exist tetrahedra with four lattice points as vertices, and containing no other lattice points, but with arbitrarily large volume. [2]

In two dimensions, the area of every polyhedron with lattice vertices is determined as a formula of the number of lattice points at its vertices, on its boundary, and in its interior, according to Pick's theorem. The Reeve tetrahedra imply that there can be no corresponding formula for the volume in three or more dimensions. Any such formula would be unable to distinguish the Reeve tetrahedra with different choices of r from each other, but their volumes are all different. [2]

Despite this negative result, it is possible (as Reeve showed) to devise a more complicated formula for lattice polyhedron volume that combines the number of lattice points in the polyhedron, the number of points of a finer lattice in the polyhedron, and the Euler characteristic of the polyhedron. [2] [3]

Ehrhart polynomial

The Ehrhart polynomial of any lattice polyhedron counts the number of lattice points that it contains when scaled up by an integer factor. The Ehrhart polynomial of the Reeve tetrahedron Tr of height r is [4]

Thus, for r ≥ 13, the coefficient of t in the Ehrhart polynomial of Tr is negative. This example shows that Ehrhart polynomials can sometimes have negative coefficients. [4]

Related Research Articles

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Polyhedron</span> 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.

<span class="mw-page-title-main">Tetrahedron</span> Polyhedron with 4 faces

In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra.

<span class="mw-page-title-main">Hilbert's third problem</span> On dissections between polyhedra

The third of Hilbert's list of mathematical problems, presented in 1900, was the first to be solved. The problem is related to the following question: given any two polyhedra of equal volume, is it always possible to cut the first into finitely many polyhedral pieces which can be reassembled to yield the second? Based on earlier writings by Carl Friedrich Gauss, David Hilbert conjectured that this is not always possible. This was confirmed within the year by his student Max Dehn, who proved that the answer in general is "no" by producing a counterexample.

<span class="mw-page-title-main">Truncated tetrahedron</span> Archimedean solid with 8 faces

In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges. It can be constructed by truncating all 4 vertices of a regular tetrahedron at one third of the original edge length.

In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane.

<span class="mw-page-title-main">Pick's theorem</span> Formula for area of a grid polygon

In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary. The result was first described by Georg Alexander Pick in 1899. It was popularized in English by Hugo Steinhaus in the 1950 edition of his book Mathematical Snapshots. It has multiple proofs, and can be generalized to formulas for certain kinds of non-simple polygons.

<span class="mw-page-title-main">Lattice (group)</span> Periodic set of points

In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point. Closure under addition and subtraction means that a lattice must be a subgroup of the additive group of the points in the space, and the requirements of minimum and maximum distance can be summarized by saying that a lattice is a Delone set. More abstractly, a lattice can be described as a free abelian group of dimension which spans the vector space . For any basis of , the subgroup of all linear combinations with integer coefficients of the basis vectors forms a lattice, and every lattice can be formed from a basis in this way. A lattice may be viewed as a regular tiling of a space by a primitive cell.

<span class="mw-page-title-main">Square pyramidal number</span> Number of stacked spheres in a pyramid

In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the number of stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broader topic of figurate numbers representing the numbers of points forming regular patterns within different shapes.

<span class="mw-page-title-main">Convex polytope</span> Convex hull of a finite set of points in a Euclidean space

A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.

<span class="mw-page-title-main">Midsphere</span> Sphere tangent to every edge of a polyhedron

In geometry, the midsphere or intersphere of a polyhedron is a sphere which is tangent to every edge of the polyhedron. That is to say, it touches any given edge at exactly one point. Not every polyhedron has a midsphere, but for every convex polyhedron there is a combinatorially equivalent polyhedron, the canonical polyhedron, that does have a midsphere. The radius of the midsphere is called the midradius.

Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.

In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.

<span class="mw-page-title-main">Integer points in convex polyhedra</span>

The study of integer points in convex polyhedra is motivated by questions such as "how many nonnegative integer-valued solutions does a system of linear equations with nonnegative coefficients have" or "how many solutions does an integer linear program have". Counting integer points in polyhedra or other questions about them arise in representation theory, commutative algebra, algebraic geometry, statistics, and computer science.

<span class="mw-page-title-main">Integral polytope</span> A convex polytope whose vertices all have integer Cartesian coordinates

In geometry and polyhedral combinatorics, an integral polytope is a convex polytope whose vertices all have integer Cartesian coordinates. That is, it is a polytope that equals the convex hull of its integer points. Integral polytopes are also called lattice polytopes or Z-polytopes. The special cases of two- and three-dimensional integral polytopes may be called polygons or polyhedra instead of polytopes, respectively.

Quadray coordinates, also known as caltrop, tetray or Chakovian coordinates, were developed by Darrel Jarmusch and others, as another take on simplicial coordinates, a coordinate system using a simplex or tetrahedron as its basis polyhedron.

In mathematics, the order polytope of a finite partially ordered set is a convex polytope defined from the set. The points of the order polytope are the monotonic functions from the given set to the unit interval, its vertices correspond to the upper sets of the partial order, and its dimension is the number of elements in the partial order. The order polytope is a distributive polytope, meaning that coordinatewise minima and maxima of pairs of its points remain within the polytope.

<span class="mw-page-title-main">Ideal polyhedron</span> Shape in hyperbolic geometry

In three-dimensional hyperbolic geometry, an ideal polyhedron is a convex polyhedron all of whose vertices are ideal points, points "at infinity" rather than interior to three-dimensional hyperbolic space. It can be defined as the convex hull of a finite set of ideal points. An ideal polyhedron has ideal polygons as its faces, meeting along lines of the hyperbolic space.

References

  1. Kiradjiev, Kristian (December 2018). "Connecting the Dots with Pick's Theorem" (PDF). Mathematics Today. Institute of mathematics and its applications. Retrieved January 6, 2023.
  2. 1 2 3 Reeve, J. E. (1957). "On the volume of lattice polyhedra". Proceedings of the London Mathematical Society . Third Series. 7: 378–395. doi:10.1112/plms/s3-7.1.378. MR   0095452.
  3. Kołodziejczyk, Krzysztof (1996). "An "odd" formula for the volume of three-dimensional lattice polyhedra". Geometriae Dedicata. 61 (3): 271–278. doi:10.1007/BF00150027. MR   1397808.
  4. 1 2 Beck, Matthias; Robins, Sinai (2015). Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics (Second ed.). New York: Springer. pp. 78–79, 82. doi:10.1007/978-1-4939-2969-6. ISBN   978-1-4939-2968-9. MR   3410115.