Rehabilitation robotics

Last updated

Rehabilitation robotics is a field of research dedicated to understanding and augmenting rehabilitation through the application of robotic devices. Rehabilitation robotics includes development of robotic devices tailored for assisting different sensorimotor functions [1] (e.g. arm, hand, [2] [3] leg, ankle [4] ), development of different schemes of assisting therapeutic training, [5] and assessment of sensorimotor performance (ability to move) [6] of patient; here, robots are used mainly as therapy aids instead of assistive devices. [7] [8] Rehabilitation using robotics is generally well tolerated by patients, and has been found to be an effective adjunct to therapy in individuals with motor impairments, especially due to stroke.

Contents

Overview

Rehabilitation robotics can be considered a specific focus of biomedical engineering, and a part of human-robot interaction. In this field, clinicians, therapists, and engineers collaborate to help rehabilitate patients.[ citation needed ]

Prominent goals in the field include: developing implementable technologies that can be easily used by patients, therapists, and clinicians; enhancing the efficacy of clinician's therapies; and increasing the ease of activities in the daily lives of patients.[ citation needed ]

History

The International Conference on Rehabilitation Robotics occurs every two years, with the first conference in 1989. The most recent conference was held in June 2019 in Toronto, as part of the RehabWeek.[ citation needed ] Rehabilitation robotics was introduced two decades ago for patients who have neurological disorders. [9] The people that you will most commonly find using rehabilitation robots are disabled people or therapists. [10] When the rehabilitation robots were created they were not intended to be recovery robots but to help people recognizing objects through touch and for people with nervous system disorder. Rehabilitation robots are used in the recuperation process of disabled patients in standing up, balancing and gait. [10] These robots must keep up with a human and their movement, therefore in the making of the machine the makers need to be sure that it will be consistent with the progress of the patient. Much rigorous work is put into the design because the robot will work with people who have disabilities and will not be able to react quickly in case something goes wrong. [11]

Function

Rehabilitation robots are designed with applications of techniques that determine the adaptability level of the patient. Techniques include but are not limited to active assisted exercise, active constrained exercise, active resistive exercise, passive exercise, and adaptive exercise. In active assisted exercise, the patient moves his or her hand in a predetermined pathway without any force pushing against it. Active constrained exercise is the movement of the patient's arm with an opposing force; if it tries to move outside of what it is supposed to. Active resistive exercise is the movement with opposing forces.[ citation needed ]

Over the years the number of rehabilitation robotics has grown but they are very limited due to the clinical trials. Many clinics have trials but do not accept the robots because they wish they were remotely controlled. Having robots involved in the rehabilitation of a patient has a few positive aspects. One of the positive aspects is the fact that you can repeat the process or exercise as many times as you wish. Another positive aspect is the fact that you can get exact measurements of their improvement or decline. You can get the exact measurements through the sensors on the device. While the device is taking a measurement you need to be careful because the device can be disrupted once it is done because of the different movements the patient does to get out. [11] The rehabilitation robot can apply constant therapy for long periods. In the process of a recovery the rehabilitation robot is unable to understand the patient's needs like a well experienced therapist would. [10] The robot is unable to understand now but in the future the device will be able to understand. Another plus of having a rehabilitation robot is that there is no physical effort put into work by the therapist.

Lately, rehabilitation robotics have been used in training medicine, surgery, remote surgery and other things, but there have been too many complaints about the robot not being controlled by a remote. Many people would think that using an industrial robot as a rehabilitation robot would be the same thing, but this is not true. Rehabilitation robots need to be adjustable and programmable, because the robot can be used for multiple reasons. Meanwhile, an industrial robot is always the same; there is no need to change the robot unless the product it is working with is bigger or smaller. In order for an industrial robot to work it would have to be more adjustable to its new task. [11]

Reasons to use this device

The number of disabled people in Spain had gone up due to aging. This means the number of assistance has gone up. The rehabilitation robot is very popular in Spain because it is an acceptable cost, and there are many people in Spain that has strokes and need assistance afterward. Rehabilitation robotics are very popular with people who have had a stroke because the proprioceptive neuromuscular facilitation method is applied. When you have a stroke your nervous system becomes damage in most cases causing people to have disability for six months after the stroke. The robot would be able to carry out exercises a therapist would carry out but the robot will do some exercises that are not so easy to be carried out by a human being. [10] The pneumatic robot helps people who have had strokes or any other illness that has caused a disorder with their upper limb [12]

A 2018 review on the effectiveness of mirror therapy by virtual reality and robotics for any type of pathology concluded that: 1) Much of the research on second-generation mirror therapy is of very low quality; 2) Evidence-based rationale to conduct such studies is missing; 3) It is not relevant to recommend investment by rehabilitation professionals and institutions in such devices. [13]

Types of robots

There are primarily two types of robots that can be used for rehabilitation: End-effector based robots and powered exoskeletons. Each system has their own advantages and limitations. End-effector systems are faster to set up and are more adaptable. On the other hand, exoskeletons offer more precise joint isolation and improve gait transparency.

Current areas of research

Current robotic devices include exoskeletons for aiding limb or hand movement, enhanced treadmills, robotic arms to retrain motor movement of the limb, and finger rehabilitation devices. Some devices are meant to aid strength development of specific motor movements, while others seek to aid these movements directly. Often robotic technologies attempt to leverage the principles of neuroplasticity by improving quality of movement, and increasing the intensity and repetition of the task. Over the last two decades, research into robot mediated therapy for the rehabilitation of stroke patients has grown significantly as the potential for cheaper and more effective therapy has been identified. [14] Though stroke has been the focus of most studies due to its prevalence in North America, [7] rehabilitation robotics can also be applied to individuals (including children) with cerebral palsy, [4] or those recovering from orthopaedic surgery. [14]

An additional benefit to this type of adaptive robotic therapy is a marked decrease in spasticity and muscle tone in the affected arm. Different spatial orientations of the robot allow for horizontal or vertical motion, or a combination in a variety of planes. [7] The vertical, anti-gravity setting is particularly useful for improving shoulder and elbow function.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Assistive technology</span> Assistive devices for people with disabilities

Assistive technology (AT) is a term for assistive, adaptive, and rehabilitative devices for people with disabilities and the elderly. Disabled people often have difficulty performing activities of daily living (ADLs) independently, or even with assistance. ADLs are self-care activities that include toileting, mobility (ambulation), eating, bathing, dressing, grooming, and personal device care. Assistive technology can ameliorate the effects of disabilities that limit the ability to perform ADLs. Assistive technology promotes greater independence by enabling people to perform tasks they were formerly unable to accomplish, or had great difficulty accomplishing, by providing enhancements to, or changing methods of interacting with, the technology needed to accomplish such tasks. For example, wheelchairs provide independent mobility for those who cannot walk, while assistive eating devices can enable people who cannot feed themselves to do so. Due to assistive technology, disabled people have an opportunity of a more positive and easygoing lifestyle, with an increase in "social participation", "security and control", and a greater chance to "reduce institutional costs without significantly increasing household expenses." In schools, assistive technology can be critical in allowing students with disabilities to access the general education curriculum. Students who experience challenges writing or keyboarding, for example, can use voice recognition software instead. Assistive technologies assist people who are recovering from strokes and people who have sustained injuries that affect their daily tasks.

Hemiparesis, or unilateral paresis, is weakness of one entire side of the body. Hemiplegia is, in its most severe form, complete paralysis of half of the body. Hemiparesis and hemiplegia can be caused by different medical conditions, including congenital causes, trauma, tumors, or stroke.

<span class="mw-page-title-main">Tremor</span> Involuntary muscle contraction

A tremor is an involuntary, somewhat rhythmic, muscle contraction and relaxation involving oscillations or twitching movements of one or more body parts. It is the most common of all involuntary movements and can affect the hands, arms, eyes, face, head, vocal folds, trunk, and legs. Most tremors occur in the hands. In some people, a tremor is a symptom of another neurological disorder.

<span class="mw-page-title-main">Apraxia</span> Medical condition

Apraxia is a motor disorder caused by damage to the brain, which causes difficulty with motor planning to perform tasks or movements. The nature of the damage determines the disorder's severity, and the absence of sensory loss or paralysis helps to explain the level of difficulty. Children may be born with apraxia; its cause is unknown, and symptoms are usually noticed in the early stages of development. Apraxia occurring later in life, known as acquired apraxia, is typically caused by traumatic brain injury, stroke, dementia, Alzheimer's disease, brain tumor, or other neurodegenerative disorders. The multiple types of apraxia are categorized by the specific ability and/or body part affected.

<span class="mw-page-title-main">Prosthesis</span> Artificial device that replaces a missing body part

In medicine, a prosthesis, or a prosthetic implant, is an artificial device that replaces a missing body part, which may be lost through trauma, disease, or a condition present at birth. Prostheses are intended to restore the normal functions of the missing body part. Amputee rehabilitation is primarily coordinated by a physiatrist as part of an inter-disciplinary team consisting of physiatrists, prosthetists, nurses, physical therapists, and occupational therapists. Prostheses can be created by hand or with computer-aided design (CAD), a software interface that helps creators design and analyze the creation with computer-generated 2-D and 3-D graphics as well as analysis and optimization tools.

Spasticity is a feature of altered skeletal muscle performance with a combination of paralysis, increased tendon reflex activity, and hypertonia. It is also colloquially referred to as an unusual "tightness", stiffness, or "pull" of muscles.

The primary goals of stroke management are to reduce brain injury and promote maximum patient recovery. Rapid detection and appropriate emergency medical care are essential for optimizing health outcomes. When available, patients are admitted to an acute stroke unit for treatment. These units specialize in providing medical and surgical care aimed at stabilizing the patient's medical status. Standardized assessments are also performed to aid in the development of an appropriate care plan. Current research suggests that stroke units may be effective in reducing in-hospital fatality rates and the length of hospital stays.

The Bobath concept is an approach to neurological rehabilitation that is applied in patient assessment and treatment. The goal of applying the Bobath concept is to promote motor learning for efficient motor control in various environments, thereby improving participation and function. This is done through specific patient handling skills to guide patients through the initiation and completing of intended tasks. This approach to neurological rehabilitation is multidisciplinary, primarily involving physiotherapists, occupational therapists, and speech and language therapists. In the United States, the Bobath concept is also known as 'neuro-developmental treatment' (NDT).

<span class="mw-page-title-main">HAL (robot)</span>

The Hybrid Assistive Limb is a powered exoskeleton suit developed by Japan's Tsukuba University and the robotics company Cyberdyne. It is designed to support and expand the physical capabilities of its users, particularly people with physical disabilities. There are two primary versions of the system: HAL 3, which only provides leg function, and HAL 5, which is a full-body exoskeleton for the arms, legs, and torso.

Hypertonia is a term sometimes used synonymously with spasticity and rigidity in the literature surrounding damage to the central nervous system, namely upper motor neuron lesions. Impaired ability of damaged motor neurons to regulate descending pathways gives rise to disordered spinal reflexes, increased excitability of muscle spindles, and decreased synaptic inhibition. These consequences result in abnormally increased muscle tone of symptomatic muscles. Some authors suggest that the current definition for spasticity, the velocity-dependent over-activity of the stretch reflex, is not sufficient as it fails to take into account patients exhibiting increased muscle tone in the absence of stretch reflex over-activity. They instead suggest that "reversible hypertonia" is more appropriate and represents a treatable condition that is responsive to various therapy modalities like drug or physical therapy.

The goal of the LOPES project is to design and implement a gait rehabilitation robot for treadmill training. The target group consists of people who have had a stroke and have impaired motor control. The main goals of LOPES are:

<span class="mw-page-title-main">Telerehabilitation</span> Delivery of rehabilitation services over the internet

Telerehabilitation (or e-rehabilitation is the delivery of rehabilitation services over telecommunication networks and the internet. Telerehabilitation allows patients to interact with providers remotely and can be used both to assess patients and to deliver therapy. Fields of medicine that utilize telerehabilitation include: physical therapy, occupational therapy, speech-language pathology, audiology, and psychology. Therapy sessions can be individual or community-based. Types of therapy available include motor training exercises, speech therapy, virtual reality, robotic therapy, goal setting, and group exercise.

Constraint-induced movement therapy is a form of rehabilitation therapy that improves upper extremity function in stroke and other central nervous system damage patients by increasing the use of their affected upper limb. Due to its high duration of treatment, the therapy has been found to frequently be infeasible when attempts have been made to apply it to clinical situations, and both patients and treating clinicians have reported poor compliance and concerns with patient safety. In the United States, the high duration of the therapy has also made the therapy not able to get reimbursed in most clinical environments.

<span class="mw-page-title-main">Management of cerebral palsy</span>

Over time, the approach to cerebral palsy management has shifted away from narrow attempts to fix individual physical problems – such as spasticity in a particular limb – to making such treatments part of a larger goal of maximizing the person's independence and community engagement. Much of childhood therapy is aimed at improving gait and walking. Approximately 60% of people with CP are able to walk independently or with aids at adulthood. However, the evidence base for the effectiveness of intervention programs reflecting the philosophy of independence has not yet caught up: effective interventions for body structures and functions have a strong evidence base, but evidence is lacking for effective interventions targeted toward participation, environment, or personal factors. There is also no good evidence to show that an intervention that is effective at the body-specific level will result in an improvement at the activity level, or vice versa. Although such cross-over benefit might happen, not enough high-quality studies have been done to demonstrate it.

<span class="mw-page-title-main">Powered exoskeleton</span> Wearable machine meant to enhance a persons strength and mobility

A powered exoskeleton is a mobile machine that is wearable over all or part of the human body, providing ergonomic structural support and powered by a system of electric motors, pneumatics, levers, hydraulics or a combination of cybernetic technologies, while allowing for sufficient limb movement with increased strength and endurance. The exoskeleton is designed to provide better mechanical load tolerance, and its control system aims to sense and synchronize with the user's intended motion and relay the signal to motors which manage the gears. The exoskeleton also protects the user's shoulder, waist, back and thigh against overload, and stabilizes movements when lifting and holding heavy items.

<span class="mw-page-title-main">Ekso Bionics</span>

Ekso Bionics Holdings Inc. is a company that develops and manufactures powered exoskeleton bionic devices that can be strapped on as wearable robots to enhance the strength, mobility, and endurance of industrial workers and people experiencing paralysis and mobility issues after a brain injury, stroke, multiple sclerosis (MS) or spinal cord injury. They enable individuals with any amount of lower extremity weakness, including those who are paralyzed, to stand up and walk.

When treating a person with a spinal cord injury, repairing the damage created by injury is the ultimate goal. By using a variety of treatments, greater improvements are achieved, and, therefore, treatment should not be limited to one method. Furthermore, increasing activity will increase his/her chances of recovery.

Neuromechanics of orthoses refers to how the human body interacts with orthoses. Millions of people in the U.S. suffer from stroke, multiple sclerosis, postpolio, spinal cord injuries, or various other ailments that benefit from the use of orthoses. Insofar as active orthoses and powered exoskeletons are concerned, the technology to build these devices is improving rapidly, but little research has been done on the human side of these human-machine interfaces.

<span class="mw-page-title-main">Proportional myoelectric control</span>

Proportional myoelectric control can be used to activate robotic lower limb exoskeletons. A proportional myoelectric control system utilizes a microcontroller or computer that inputs electromyography (EMG) signals from sensors on the leg muscle(s) and then activates the corresponding joint actuator(s) proportionally to the EMG signal.

Video game rehabilitation is a process of using common video game consoles and methodology to target and improve physical and mental weaknesses through therapeutic processes. Video games are becoming an integral part of occupational therapy practice in acute, rehabilitation, and community settings. The design for video games in rehabilitation is focused on a number of fundamental principles, such as reward, goals, challenge, and meaningful play. 'Meaningful play' emerges from the relationship between player action and system outcome, apparent to the player through, visual, physical and aural feedback. Platforms that feature motion control, notably the Nintendo Wii, Microsoft's Xbox Kinect, Sony's Eye Toy, and virtual reality have all been effective in this field of research. Methodologies have been applied to all age groups, from toddlers to the elderly. It has been used in a variety of cases ranging from stroke rehabilitation, cerebral palsy and other neurological impairments, to tendinitis and multiple sclerosis. Researchers have promoted such technology based on the personalization of gaming systems to patients, allowing for further engagement and interaction. Additionally, gaming consoles have the ability to capture real-time data and provide instant feedback to the patients using the systems. Currently, several researchers have performed case studies to demonstrate the benefits of this technology. Repeat trials and experiments have shown that outcomes are easily replicated among various groups worldwide. Additionally, the outcomes have increased interest in the field, growing experiments beyond simple case studies to experiments with a larger participant base.

References

  1. Brewer, Bambi R.; McDowell, Sharon K.; Worthen-Chaudhari, Lise C. (2007). "Poststroke Upper Extremity Rehabilitation: A Review of Robotic Systems and Clinical Results". Topics in Stroke Rehabilitation. 14 (6): 22–44. doi:10.1310/tsr1406-22. PMID   18174114. S2CID   207260716.
  2. Balasubramanian, Sivakumar; Klein, Julius; Burdet, Etienne (2010). "Robot-assisted rehabilitation of hand function". Current Opinion in Neurology. 23 (6): 661–70. doi:10.1097/WCO.0b013e32833e99a4. PMID   20852421.
  3. Yongsuk Kang; Doyoung Jeon (2012). "Rehabilitation robot control using the VSD method". 2012 IEEE/SICE International Symposium on System Integration (SII). pp. 192–197. doi:10.1109/SII.2012.6427313. ISBN   978-1-4673-1497-8. S2CID   21181553.
  4. 1 2 Michmizos, Konstantinos P.; Rossi, Stefano; Castelli, Enrico; Cappa, Paolo; Krebs, Hermano Igo (2015). "Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation". IEEE Transactions on Neural Systems and Rehabilitation Engineering. 23 (6): 1056–67. doi:10.1109/TNSRE.2015.2410773. PMC   4692803 . PMID   25769168.
  5. Marchal-Crespo, Laura; Reinkensmeyer, David J (2009). "Review of control strategies for robotic movement training after neurologic injury". Journal of NeuroEngineering and Rehabilitation. 6: 20. doi: 10.1186/1743-0003-6-20 . PMC   2710333 . PMID   19531254.
  6. Balasubramanian, Sivakumar; Colombo, Roberto; Sterpi, Irma; Sanguineti, Vittorio; Burdet, Etienne (2012). "Robotic Assessment of Upper Limb Motor Function After Stroke". American Journal of Physical Medicine & Rehabilitation. 91 (11 Suppl 3): S255–69. doi:10.1097/PHM.0b013e31826bcdc1. PMID   23080041. S2CID   34630716.
  7. 1 2 3 Krebs, Hermano; Ferraro, Mark; Buerger, Stephen P; Newbery, Miranda J; Makiyama, Antonio; Sandmann, Michael; Lynch, Daniel; Volpe, Bruce T; Hogan, Neville (2004). "Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus". Journal of NeuroEngineering and Rehabilitation. 1 (1): 5. doi: 10.1186/1743-0003-1-5 . PMC   544952 . PMID   15679916.
  8. Haghshenas-Jaryani, Mahdi; Patterson, Rita M.; Bugnariu, Nicoleta; Wijesundara, Muthu B.J. (2020). "A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation". Journal of Hand Therapy. 33 (2): 198–208. doi: 10.1016/j.jht.2020.03.024 . PMID   32423846. S2CID   218688698.
  9. Gimigliano, Francesca; Palomba, Angela; Arienti, Chiara; Morone, Giovanni; Perrero, Luca; Agostini, Michela; Aprile, Irene; Paci, Matteo; Casanova, Emanuela; Marino, Dario; LA Rosa, Giuseppe (2021-06-15). "Robot-assisted arm therapy in neurological health conditions: rationale and methodology for the evidence synthesis in the CICERONE Italian Consensus Conference". European Journal of Physical and Rehabilitation Medicine. 57 (5): 824–830. doi:10.23736/S1973-9087.21.07011-8. hdl: 11392/2474755 . ISSN   1973-9095. PMID   34128606. S2CID   235439893.
  10. 1 2 3 4 Carrera, Isela; Moreno, Héctor A.; Saltarén, Roque; Pérez, Carlos; Puglisi, Lisandro; Garcia, Cecilia (2011). "ROAD: domestic assistant and rehabilitation robot". Medical & Biological Engineering & Computing. 49 (10): 1201–11. doi:10.1007/s11517-011-0805-4. PMID   21789672. S2CID   1171144.
  11. 1 2 3 Munih, Marko; Bajd, Tadej (2011). "Rehabilitation robotics". Technology and Health Care. 19 (6): 483–95. doi:10.3233/THC-2011-0646. PMID   22129949.
  12. Tefertiller, Candace; Pharo, Beth; Evans, Nicholas; Winchester, Patricia (2011). "Efficacy of rehabilitation robotics for walking training in neurological disorders: A review". The Journal of Rehabilitation Research and Development. 48 (4): 387–416. doi: 10.1682/JRRD.2010.04.0055 . PMID   21674390.
  13. Darbois, Nelly; Guillaud, Albin; Pinsault, Nicolas (2018). "Does Robotics and Virtual Reality Add Real Progress to Mirror Therapy Rehabilitation? A Scoping Review". Rehabilitation Research and Practice. 2018: 6412318. doi: 10.1155/2018/6412318 . PMC   6120256 . PMID   30210873.
  14. 1 2 Hillman, Michael (2004). "2 Rehabilitation Robotics from Past to Present – A Historical Perspective". In Bien, Z. Zenn; Stefanov, Dimitar (eds.). Advances in Rehabilitation Robotics. Lecture Notes in Control and Information Science. Vol. 306. pp. 25–44. doi:10.1007/10946978_2. ISBN   978-3-540-44396-4.

Further reading