Remote File Sharing

Last updated

Remote File Sharing (RFS) is a Unix operating system component for sharing resources, such as files, devices, and file system directories, across a network, in a network-independent manner, similar to a distributed file system. It was developed at Bell Laboratories of AT&T in the 1980s, and was first delivered with UNIX System V Release 3 (SVR3). [1] RFS relied on the STREAMS Transport Provider Interface feature of this operating system. It was also included in UNIX System V Release 4, but as that also included the Network File System (NFS) which was based on TCP/IP and more widely supported in the computing industry, RFS was little used. Some licensees of AT&T UNIX System V Release 4 did not include RFS support in SVR4 distributions, and Sun Microsystems removed it from Solaris 2.4.

Contents

Features

The basic application architecture of RFS is the client–server model, in which a participating host may be a server as well as a client, simultaneously. It was based on different design decisions, in comparison to the Network File System (NFS). Instead of focusing on reliable operation in the presence of failures, it focused on preserving UNIX file system semantics across the network. This enabled the system to provide remote access to hardware resources located on an RFS server. Unlike NFS (before version 4), the RFS server maintains state to keep track of how many times a file has been opened, or the locks established on a file or device.

RFS provides complete UNIX/POSIX file semantics for all file types, including special devices, and named pipes. It supports access controls and record and file locking of remote files in a transparent manner as if the shared files are local. This permitted binary application compatibility when involving network resources. [2] It allows the mounting of devices across the network. For example, /dev/cdrom can be accessed remotely, as if it were a local resource. Access to any specific file or a file system directory is transparent across the network, so that users do not need to know where a file is actually located.

RFS is implemented independently of the underlying network technology. For this it relies on the System V STREAMS mechanism using the Transport Provider Interface. [3]

Remote system call interface

See also

Related Research Articles

The ext2 or second extended file system is a file system for the Linux kernel. It was initially designed by French software developer Rémy Card as a replacement for the extended file system (ext). Having been designed according to the same principles as the Berkeley Fast File System from BSD, it was the first commercial-grade filesystem for Linux.

DNIX is a discontinued Unix-like real-time operating system from the Swedish company Dataindustrier AB (DIAB). A version named ABCenix was developed for the ABC 1600 computer from Luxor. Daisy Systems also had a system named Daisy DNIX on some of their computer-aided design (CAD) workstations. It was unrelated to DIAB's product.

Network File System (NFS) is a distributed file system protocol originally developed by Sun Microsystems (Sun) in 1984, allowing a user on a client computer to access files over a computer network much like local storage is accessed. NFS, like many other protocols, builds on the Open Network Computing Remote Procedure Call system. NFS is an open IETF standard defined in a Request for Comments (RFC), allowing anyone to implement the protocol.

<span class="mw-page-title-main">Maildir</span> E-mail format

The Maildir e-mail format is a common way of storing email messages in which each message is stored in a separate file with a unique name, and each mail folder is a file system directory. The local file system handles file locking as messages are added, moved and deleted. A major design goal of Maildir is to eliminate the need for program code to handle file locking and unlocking.

The inode is a data structure in a Unix-style file system that describes a file-system object such as a file or a directory. Each inode stores the attributes and disk block locations of the object's data. File-system object attributes may include metadata, as well as owner and permission data.

In Unix and Unix-like computer operating systems, a file descriptor is a process-unique identifier (handle) for a file or other input/output resource, such as a pipe or network socket.

<span class="mw-page-title-main">File system</span> Format or program for storing files and directories

In computing, a file system or filesystem is a method and data structure that the operating system uses to control how data is stored and retrieved. Without a file system, data placed in a storage medium would be one large body of data with no way to tell where one piece of data stopped and the next began, or where any piece of data was located when it was time to retrieve it. By separating the data into pieces and giving each piece a name, the data are easily isolated and identified. Taking its name from the way a paper-based data management system is named, each group of data is called a "file". The structure and logic rules used to manage the groups of data and their names is called a "file system."

The Write Anywhere File Layout (WAFL) is a proprietary file system that supports large, high-performance RAID arrays, quick restarts without lengthy consistency checks in the event of a crash or power failure, and growing the filesystems size quickly. It was designed by NetApp for use in its storage appliances like NetApp FAS, AFF, Cloud Volumes ONTAP and ONTAP Select.

The seven standard Unix file types are regular, directory, symbolic link, FIFO special, block special, character special, and socket as defined by POSIX. Different OS-specific implementations allow more types than what POSIX requires. A file's type can be identified by the ls -l command, which displays the type in the first character of the file-system permissions field.

File locking is a mechanism that restricts access to a computer file, or to a region of a file, by allowing only one user or process to modify or delete it at a specific time and to prevent reading of the file while it's being modified or deleted.

Unix-like operating systems identify a user by a value called a user identifier, often abbreviated to user ID or UID. The UID, along with the group identifier (GID) and other access control criteria, is used to determine which system resources a user can access. The password file maps textual user names to UIDs. UIDs are stored in the inodes of the Unix file system, running processes, tar archives, and the now-obsolete Network Information Service. In POSIX-compliant environments, the command-line command id gives the current user's UID, as well as more information such as the user name, primary user group and group identifier (GID).

Lustre is a type of parallel distributed file system, generally used for large-scale cluster computing. The name Lustre is a portmanteau word derived from Linux and cluster. Lustre file system software is available under the GNU General Public License and provides high performance file systems for computer clusters ranging in size from small workgroup clusters to large-scale, multi-site systems. Since June 2005, Lustre has consistently been used by at least half of the top ten, and more than 60 of the top 100 fastest supercomputers in the world, including the world's No. 1 ranked TOP500 supercomputer in November 2022, Frontier, as well as previous top supercomputers such as Fugaku, Titan and Sequoia.

lsof

lsof is a command meaning "list open files", which is used in many Unix-like systems to report a list of all open files and the processes that opened them. This open source utility was developed and supported by Victor A. Abell, the retired Associate Director of the Purdue University Computing Center. It works in and supports several Unix flavors.

For most file systems, a program initializes access to a file in a file system using the open system call. This allocates resources associated to the file, and returns a handle that the process will use to refer to that file. In some cases the open is performed by the first access.

A network socket is a software structure within a network node of a computer network that serves as an endpoint for sending and receiving data across the network. The structure and properties of a socket are defined by an application programming interface (API) for the networking architecture. Sockets are created only during the lifetime of a process of an application running in the node.

The following tables compare general and technical information for a number of file systems.

In computing, Self-certifying File System (SFS) is a global and decentralized, distributed file system for Unix-like operating systems, while also providing transparent encryption of communications as well as authentication. It aims to be the universal distributed file system by providing uniform access to any available server, however, the usefulness of SFS is limited by the low deployment of SFS clients. It was developed in the June 2000 doctoral thesis of David Mazières.

A clustered file system is a file system which is shared by being simultaneously mounted on multiple servers. There are several approaches to clustering, most of which do not employ a clustered file system. Clustered file systems can provide features like location-independent addressing and redundancy which improve reliability or reduce the complexity of the other parts of the cluster. Parallel file systems are a type of clustered file system that spread data across multiple storage nodes, usually for redundancy or performance.

An automounter is any program or software facility which automatically mounts filesystems in response to access operations by user programs. An automounter system utility, when notified of file and directory access attempts under selectively monitored subdirectory trees, dynamically and transparently makes local or remote devices accessible.

The Newcastle Connection was a software subsystem from the early 1980s that could be added to each of a set of interconnected UNIX-like systems to build a distributed system. The latter would be functionally indistinguishable, at both user- and system-level, from a conventional UNIX system. It became a forerunner of Sun Microsystems' Network File System (NFS). The name derives from the research group at Newcastle University, under Brian Randell, which developed it.

References

  1. Rifkin, Andrew P.; Forbes, Michael P.; Hamilton, Richard L.; Sabrio, Michael; Shah, Suryakanta; Yueh, Kang (1987). "RFS architectural overview". Australian UNIX systems User Group Newsletter. Vol. 7.
  2. A. P. Rifkin, M. P. Forbes, R. L. Hamilton, Michail Sabrio, S. Shah, and K. Yueh, RFS Architectural Overview, USENIX Conference Proceedings (June 1986), Atlanta, GA
  3. Dennis M. Ritchie, A Stream Input-Output System, Bell Laboratories Technical Journal 63(8) (October 1984)